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the operators F and T are given by
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The integral equations (eq 7) are posed on the union Γ of all
interfaces. In our waveguide context, the interface set Γ is
typically unbounded, but upon the use of the rapidly
convergent windowing approach introduced in the following
subsection, certain windowed integral equations (eq 11) over a
bounded domain are obtained, which closely approximate the
original unbounded problem and which can subsequently be
discretized by means of any integral-equation methodology
applicable to bounded domains. The reader may refer to refs
22 and 23 for background regarding the integral formulation
used. More information regarding the incident waveguide
modes and Gaussian-beam excitations can be found in the SI.
Next, we use the WGF-BIE solver to design new

nanophotonic devices via inverse design based on the adjoint
method. An in-depth derivation of the adjoint method for
optimization in the context of integral equations is presented in
Section V of the SI. That section presents the adjoint method
as a technique that proceeds by eliminating expensive-to-
compute quantities from the chain-rule expression for the
gradient of the objective function. The necessary equations to
effect the elimination are obtained as linear combinations of
known linear equations, with coefficients that are given
precisely by the solution of a certain adjoint equation. The
SI derivation is presented in a formal framework that not only
applies to the discrete set of equations after the integral
equations are discretized, but it also applies, in a formal
mathematical setting, to the continuous, undiscretized form of

the integral equations. This is a matter of some interest, as it
provides a sound methodology for the accelerated evaluation
of the adjoint operators associated with the fast gradient
evaluation algorithm, in addition to the acceleration of the
direct solution operators, as previously discussed.

■ TERMINATION AND DISCRETIZATION OF
INFINITE AND SEMI-INFINITE WAVEGUIDES: THE
WINDOWED GREEN FUNCTION

The system of equations (eq 7) involves integration over the
generally unbounded curves Γ+(r) and Γ−(r) for points r ∈ Γ.
As mentioned in the introduction, the PML truncation
procedures that are generally used in the context of FDTD
and FEM approaches are not directly amenable for use in
conjunction with BIE methods. As shown in ref 22, on the
contrary, an appropriate application of a slow-rise window such
as
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to the Green’s function effectively truncates the SIW
boundaries and yields superalgebraically fast convergence.
More precisely, the solution Φw

scat of the “windowed” integral
equations

r r r r r r rF T w F T( ) ( ) ( ) ( ) ( ) ( ) forw A w
scat scat inc incΦ Φ Φ Φ+ [ ] = − − [ ] ∈ Γ̃

(11)

on the bounded curve Γ̃= Γ ∩{wA(r) ≠ 0} converges
superalgebraically fast as A → ∞ (faster than any negative
power of A) to the exact solution of eq 7 throughout the A-
dependent set Γ ∩ {wA(r) = 1}.
Calling ξc = Φw

scat and bc(r) = −F(r)Φinc(r) − T[Φinc](r)
and letting c2 denote the operator

r r rF T w( ) ( ) ( )c c c A c2 ξ ξ ξ[ ] = + [ ] (12)

eq 11 can be re-expressed in the form

r r rb( ) ( ),c c c2 ξ[ ] = ∈ Γ (13)

Figure 2. Left: Convergence of the WGF-BIE solver, commercial FDTD and FEM solvers, and open-source MaxwellFDFD solver against analytical
solution versus the number of points per wavelength. Dashed lines represent first-, second-, and third-order convergence for reference. The WGF-
BIE solver exhibits spectral accuracy, whereas the FDTD and FDFD solvers fail to achieve even second-order convergence. Only the FEM solver
with quadratic elements achieves third-order convergence; however, this is a very expensive resource in terms of memory and CPU time. Right:
Comparison of relative error versus time required for the WGF-BIE solver and the FDTD, FEM, and FDFD solvers. The higher order WGF-BIE
accuracy demonstrated in this figure is especially beneficial in countering the accuracy losses inherent in the evaluation of the gradient of the
objective function in the optimization context.
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objective function to be optimized is simply the power in the
fundamental mode of the output guide computed via a mode
overlap integral. We could have easily introduced radius of
curvature constraints on the boundary, as in ref 9; however,
they were not required due to the choice of boundary
representation. The advantages of using a B-spline boundary
representation are that considerable complexity can be
modeled using only a small set of control parameters, reducing
the optimization difficulty, and, furthermore, adjacent curves
and their derivatives are continuous, leading to a smoothly
varying structure regardless of the choice of parameters. Each
B-spline curve shares three of its control points with
neighboring curves, which ensures continuity from one curve
to the next as well as of the derivatives along the whole
boundary. Thus the transition region to be optimized is
represented by 13 B-Spline curves that are described by 14
control knots. These control knots are the unknowns to be
optimized. Each knot consists of two parameters to describe its
z and x coordinates; therefore, the total number of
optimization parameters is 28. The top and bottom boundaries
of the taper are mirrors of each other because the device is
expected to be symmetric about the z axis.
We used the adjoint method, described in the SI, coupled to

the BIE solver to obtain the gradient of the objective function
at each iteration and used simple gradient descent with an
adaptive step size to apply gradient-based updates to the
design. The starting efficiency of the design was 49% and the
algorithm was able to achieve a design with >99% efficiency in
just 10 iterations. Because of the efficiency of the methods used
for modeling and gradient computation, the whole optimiza-
tion procedure took 10 min on a single-core laptop computer
and used only 150 MB of memory. This is more than 200
times faster than a similar device optimized in ref 9, which
required 35 core hours (2.5 h on a 14-core server with 128 GB
of RAM), highlighting the major computational improvements
provided by the present work. Figure 4c,d shows the
magnitude and real part of Ey, respectively, of the final
optimized taper designs. As can be seen, the resulting structure
exhibits a smooth curvature, making it readily amenable for
lithographic fabrication.

■ 1550 nm 1:2 POWER SPLITTER
To demonstrate that our design approach can readily
generalize to any number of waveguide inputs and outputs,

we demonstrate a 1-to-2 power splitter optimized to split
incoming light at 1.55 μm equally into two outputs. Note that
because of reciprocity, this device could also be used in reverse
as a power combiner. Compact power-splitting devices are
important building blocks of almost every nanophotonic
system and are especially crucial for phased arrays.27 Unlike
the Y-splitters optimized in refs 5 and 26, whose outputs are
oriented at ±45° angles, we design the splitter outputs with the
same orientation as the input (0°), which allows for more
compact routing and easier integration with other blocks.
Figure 5a,b shows the magnitude and real part of the Ey fields

of the initial splitter structure before optimization. As with the
taper, B-splines were used to parametrize the boundaries.
Because of symmetry about the z axis, only the top boundary
and top half of the divider boundary were parametrized with
unique unknowns, and the remaining curves were mirrored
from these. The top boundary is parametrized with 11 B-
splines, which correspond to 14 control knots. The divider
boundary between the two outputs is parametrized with 8 B-
Splines, which correspond to 11 control knots. Because the
bottom half of the divider boundary must mirror the top half,
only 6 of these 11 knots are unique, and the rest are mirrored
about the z axis. All of the control knots for the bottom side
boundary of the splitter are mirrored from the top boundary
about the z axis. Thus the full splitter device is parametrized
with 20 control knots, and because each knot has two
independent (x and z) coordinates, this corresponds to 40
optimization parameters. Because the enforced symmetry of
the device ensures equal power flow through the two outputs,
it suffices to only optimize the power going through one of
them in the objective function. The objective function used in
this scenario is therefore given by

f Pp p( ) ( ( ) 0.5)out
top 2= − (15)

Unconstrained gradient descent is used for the local search
algorithm, and the gradients are obtained via the efficient
adjoint approach described in this work. The optimization
algorithm converges to a solution that is 99.6% efficient (49.8%
of the input power makes it to each output) after a total of 100
iterations. The whole optimization takes <2 min to run on a

Figure 4. (a) Absolute value of the Ey field component of the initial
taper. (b) Real part of Ey of the initial taper. (c) Absolute value of Ey
of the final optimized taper device. (d) Real part of Ey of the final
optimized taper device. The initial design achieved only 49%
efficiency, whereas the final optimized design exceeded 99% efficiency.

Figure 5. (a) Absolute value of the Ey field component of the initial
splitter. (b) Real part of Ey of the initial splitter. (c) Absolute value of
Ey of the final optimized 1550 nm 50:50 power splitter device. (d)
Real part of Ey of the final optimized splitter device. The initial design
achieved <30% efficiency, whereas the final optimized design
exceeded 99.6% efficiency.
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objective function to be optimized is simply the power in the
fundamental mode of the output guide computed via a mode
overlap integral. We could have easily introduced radius of
curvature constraints on the boundary, as in ref 9; however,
they were not required due to the choice of boundary
representation. The advantages of using a B-spline boundary
representation are that considerable complexity can be
modeled using only a small set of control parameters, reducing
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and their derivatives are continuous, leading to a smoothly
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z and x coordinates; therefore, the total number of
optimization parameters is 28. The top and bottom boundaries
of the taper are mirrors of each other because the device is
expected to be symmetric about the z axis.
We used the adjoint method, described in the SI, coupled to
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adaptive step size to apply gradient-based updates to the
design. The starting efficiency of the design was 49% and the
algorithm was able to achieve a design with >99% efficiency in
just 10 iterations. Because of the efficiency of the methods used
for modeling and gradient computation, the whole optimiza-
tion procedure took 10 min on a single-core laptop computer
and used only 150 MB of memory. This is more than 200
times faster than a similar device optimized in ref 9, which
required 35 core hours (2.5 h on a 14-core server with 128 GB
of RAM), highlighting the major computational improvements
provided by the present work. Figure 4c,d shows the
magnitude and real part of Ey, respectively, of the final
optimized taper designs. As can be seen, the resulting structure
exhibits a smooth curvature, making it readily amenable for
lithographic fabrication.

■ 1550 nm 1:2 POWER SPLITTER
To demonstrate that our design approach can readily
generalize to any number of waveguide inputs and outputs,

we demonstrate a 1-to-2 power splitter optimized to split
incoming light at 1.55 μm equally into two outputs. Note that
because of reciprocity, this device could also be used in reverse
as a power combiner. Compact power-splitting devices are
important building blocks of almost every nanophotonic
system and are especially crucial for phased arrays.27 Unlike
the Y-splitters optimized in refs 5 and 26, whose outputs are
oriented at ±45° angles, we design the splitter outputs with the
same orientation as the input (0°), which allows for more
compact routing and easier integration with other blocks.
Figure 5a,b shows the magnitude and real part of the Ey fields

of the initial splitter structure before optimization. As with the
taper, B-splines were used to parametrize the boundaries.
Because of symmetry about the z axis, only the top boundary
and top half of the divider boundary were parametrized with
unique unknowns, and the remaining curves were mirrored
from these. The top boundary is parametrized with 11 B-
splines, which correspond to 14 control knots. The divider
boundary between the two outputs is parametrized with 8 B-
Splines, which correspond to 11 control knots. Because the
bottom half of the divider boundary must mirror the top half,
only 6 of these 11 knots are unique, and the rest are mirrored
about the z axis. All of the control knots for the bottom side
boundary of the splitter are mirrored from the top boundary
about the z axis. Thus the full splitter device is parametrized
with 20 control knots, and because each knot has two
independent (x and z) coordinates, this corresponds to 40
optimization parameters. Because the enforced symmetry of
the device ensures equal power flow through the two outputs,
it suffices to only optimize the power going through one of
them in the objective function. The objective function used in
this scenario is therefore given by

f Pp p( ) ( ( ) 0.5)out
top 2= − (15)

Unconstrained gradient descent is used for the local search
algorithm, and the gradients are obtained via the efficient
adjoint approach described in this work. The optimization
algorithm converges to a solution that is 99.6% efficient (49.8%
of the input power makes it to each output) after a total of 100
iterations. The whole optimization takes <2 min to run on a

Figure 4. (a) Absolute value of the Ey field component of the initial
taper. (b) Real part of Ey of the initial taper. (c) Absolute value of Ey
of the final optimized taper device. (d) Real part of Ey of the final
optimized taper device. The initial design achieved only 49%
efficiency, whereas the final optimized design exceeded 99% efficiency.

Figure 5. (a) Absolute value of the Ey field component of the initial
splitter. (b) Real part of Ey of the initial splitter. (c) Absolute value of
Ey of the final optimized 1550 nm 50:50 power splitter device. (d)
Real part of Ey of the final optimized splitter device. The initial design
achieved <30% efficiency, whereas the final optimized design
exceeded 99.6% efficiency.
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Figure 6: (a-b) Initial design of an adiabatic taper achieving 
only 49% efficiency; (a) modulus and (b) electric field real 
part). (c-d) Inverse designed solution achieving 99% efficiency 
(modulus (c) and real part (d)).  (g-h) Analogous figures for a 
power splitter, with the initial and final designs achieving <30% 
and 99.6% efficiency respectively (C. Sideris et al, ACS 
Photonics, 6, 2019)

Figure 3: (P. Weigel’s Ph.D. thesis) Directional coupler 
parameters optimized for broadband performance.

Figure 5: Error for the integral equation Maxwell solver (green 
points) compared to Finite Difference Time Domain (FDTD) and 
other numerical methods with respect to (left) number of points 
per wavelength and (right) time required. (C. Sideris et al, ACS 
Photonics, 6, 2019)

Figure 2: Modeled input/output of a directional coupler, 
with 50:50 splitting at 1550 nm without optimization for 
broadband performance.

Figure 4: (left,middle) Gratings couplers fabricated at 
JPL MDL, and (right) test setup for device 
characterization (courtesy Co-I R. Briggs).

a) b)

d)c)

e) f)

h)g)
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Figure: Optimal photonics through inverse 
design and state of the art integral equation 
Maxwell solver ([1], C. Sideris et al, ACS 
Photonics, 6, 2019) (a-b) Initial design of an 
adiabatic taper achieving only 49% 
efficiency; (a) modulus and (b) electric field 
real part). (c-d) Inverse designed solution 
achieving 99% efficiency (modulus (c) and 
real part (d)).  (g-h) Analogous figures for a 
power splitter, with the initial and final 
designs achieving <30% and 99.6% 
efficiency respectively.

Abstract Our objective was to design a new multi-layer grating coupler for broadband LP-mode demultiplexing, optimized 
with a state-of-the-art integral equation method Maxwell solver in an inverse photonics design framework.  Grating couplers 
provide one way to couple incident light into waveguides which can then be routed to integrated photonic devices (integrated 
circuits and/or arrayed waveguide gratings). Photonic devices will typically have high throughput over a limited wavelength 
range, so that building up coverage over a science driven bandpass requires spectral demultiplexing of the incident light into 
separate channels. We explored the novel idea of stacked layers of grating couplers, with each layer designed to couple to a 
narrow wavelength band, providing overall broad wavelength coverage. The focus of this proposal involved two-dimensional 
optimization as a first step – future work will involve fully three-dimensional optimization also including spatial arrays of the 
couplers designed here for fundamental, and higher-order, LP-mode spatial/spectral de-multiplexing for subsequent photonic 
integrated circuit “computing” on chip.



A) The optical path from a segmented aperture telescope through a coronagraph [2]. B) Simulated focal plane diffraction pattern 
(modulus shown) for an aberrated wavefront due to telescope primary mirror segment piston errors, overlaid on a hexagonal spatial 
array of lenslets. C) An example spatial array of grating couplers, here showing a 1-ring spatial array, which would sit underneath the 
lenslets in fig. B above. Near normal incidence light couples into the grating couplers and through the adiabatic tapers, routing the 
light into downstream photonic devices on the same chip.  Our inverse designed multi-layer grating coupler can feed multiple 
narrow band channels to downstream photonic devices, enabling overall broadband photonic instrument concepts.

Problem Description

   6 

3.4 Wavefront Sensing and Control 
Several wavefront sensing techniques exist to first establish (i.e., during commissioning) and 
then maintain telescope optical quality while in orbit. Most notably, image-based techniques 
estimate the wavefront error across the fields of view of each camera using star images and 
spectra from the science instruments processed on the ground. The primary mirror RBAs and 
FCAs, and the secondary mirror RBAs, use this information to optimize the system-level optical 
quality across all the instruments using essentially the same methods as JWST18,19,20. Occasional 
recalibration observations will monitor and correct long-term WF drifts. 

 
Figure 6. A Vector Vortex Coronagraph for the ATSA telescope. The two DMs are used to dig the dark 
hole discovery region, potentially with help from the active PM. Then low-order WF sensing (LOWFS) 
and high-order out-of-band WF sensing (OBWFS) operate during coronagraph observations to preserve 
the high-contrast WF. Changes in the measured WF are fed back to DM1, DM2, and the telescope active 
PM. An internal WFS calibration source provides for high-SNR OBWFS measurements for high spatial 
frequency corrections of DM and instrument drifts, and provides a DM servo mode. 
However, the desire to detect and characterize Earth-like exoplanets via coronagraphic imaging 
imposes a new class of requirements on WFSC technology. In particular, wavefront stability on 
the order of tens of picometers is required for segmented aperture coronagraphic telescopes – a 
1000x factor increase from non-coronagraphic UVOIR missions. Therefore, dedicated 
coronagraphic wavefront sensors are required in addition to those used to commission the 
telescope (Figure 6). WFIRST’s Low-Order Wavefront Sensor (LOWFS), has demonstrated (via 
the High Contrast Imaging Testbed, HCIT) sensitivity at the picometer level, with photon fluxes 
representative of flight operation21. However, as the name suggests, the LOWFS is only able to 
detect changes of low spatial frequency. Telescopes implementing segmented apertures along 
with high-actuator count deformable mirrors, are susceptible to mid/high-spatial frequency errors 
and therefore a sensor capable of detecting these changes is required. JPL has developed a high-
order wavefront sensing testbed that extends the spatial bandpass of the LOWFS. The testbed is 
based on the Zernike Wavefront Sensor (ZWFS) concept, which implements the phase contrast 
technique22. This technique provides a simple, photon-efficient method of measuring changes in 
wavefront errors by modulating optical phase variations to intensity variations on a pupil-
viewing camera. The testbed has demonstrated the ability to detect high-spatial frequency 
wavefront changes (i.e., due to deformable mirror actuator pokes) on the order of 200 picometers 
in an in-air laboratory setting. 

4 Technology Drivers 
Technology needs for a cold ATSA mission include six ATSA-specific items, plus 17 other 
items that are already identified in the LUVOIR or HabEx final reports, as shown in Table 1. In 
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Innovation of the approach: We use a state-of-the-art integral equation Maxwell solver [1], orders of magnitude faster and more 
accurate than Finite Difference Time Domain (FDTD) solvers, enabling high fidelity fields to be solved at each step of an inverse 
photonics design optimization.  The speed and accuracy of the solvers enable optimization directly in terms of high-dimensional 
device (geometric) parameter spaces, resulting in novel, non-intuitive, photonic device designs.  The framework allows objective
functions including rewards for robustness to fabrication errors.  The optimization involves an adjoint method gradient descent,
converging to local objective function minima.  Good feasible solutions are discovered with an ensemble of random initial designs.

Methodology
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the operators F and T are given by
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The integral equations (eq 7) are posed on the union Γ of all
interfaces. In our waveguide context, the interface set Γ is
typically unbounded, but upon the use of the rapidly
convergent windowing approach introduced in the following
subsection, certain windowed integral equations (eq 11) over a
bounded domain are obtained, which closely approximate the
original unbounded problem and which can subsequently be
discretized by means of any integral-equation methodology
applicable to bounded domains. The reader may refer to refs
22 and 23 for background regarding the integral formulation
used. More information regarding the incident waveguide
modes and Gaussian-beam excitations can be found in the SI.
Next, we use the WGF-BIE solver to design new

nanophotonic devices via inverse design based on the adjoint
method. An in-depth derivation of the adjoint method for
optimization in the context of integral equations is presented in
Section V of the SI. That section presents the adjoint method
as a technique that proceeds by eliminating expensive-to-
compute quantities from the chain-rule expression for the
gradient of the objective function. The necessary equations to
effect the elimination are obtained as linear combinations of
known linear equations, with coefficients that are given
precisely by the solution of a certain adjoint equation. The
SI derivation is presented in a formal framework that not only
applies to the discrete set of equations after the integral
equations are discretized, but it also applies, in a formal
mathematical setting, to the continuous, undiscretized form of

the integral equations. This is a matter of some interest, as it
provides a sound methodology for the accelerated evaluation
of the adjoint operators associated with the fast gradient
evaluation algorithm, in addition to the acceleration of the
direct solution operators, as previously discussed.

■ TERMINATION AND DISCRETIZATION OF
INFINITE AND SEMI-INFINITE WAVEGUIDES: THE
WINDOWED GREEN FUNCTION

The system of equations (eq 7) involves integration over the
generally unbounded curves Γ+(r) and Γ−(r) for points r ∈ Γ.
As mentioned in the introduction, the PML truncation
procedures that are generally used in the context of FDTD
and FEM approaches are not directly amenable for use in
conjunction with BIE methods. As shown in ref 22, on the
contrary, an appropriate application of a slow-rise window such
as
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to the Green’s function effectively truncates the SIW
boundaries and yields superalgebraically fast convergence.
More precisely, the solution Φw

scat of the “windowed” integral
equations
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on the bounded curve Γ̃= Γ ∩{wA(r) ≠ 0} converges
superalgebraically fast as A → ∞ (faster than any negative
power of A) to the exact solution of eq 7 throughout the A-
dependent set Γ ∩ {wA(r) = 1}.
Calling ξc = Φw

scat and bc(r) = −F(r)Φinc(r) − T[Φinc](r)
and letting c2 denote the operator

r r rF T w( ) ( ) ( )c c c A c2 ξ ξ ξ[ ] = + [ ] (12)

eq 11 can be re-expressed in the form

r r rb( ) ( ),c c c2 ξ[ ] = ∈ Γ (13)

Figure 2. Left: Convergence of the WGF-BIE solver, commercial FDTD and FEM solvers, and open-source MaxwellFDFD solver against analytical
solution versus the number of points per wavelength. Dashed lines represent first-, second-, and third-order convergence for reference. The WGF-
BIE solver exhibits spectral accuracy, whereas the FDTD and FDFD solvers fail to achieve even second-order convergence. Only the FEM solver
with quadratic elements achieves third-order convergence; however, this is a very expensive resource in terms of memory and CPU time. Right:
Comparison of relative error versus time required for the WGF-BIE solver and the FDTD, FEM, and FDFD solvers. The higher order WGF-BIE
accuracy demonstrated in this figure is especially beneficial in countering the accuracy losses inherent in the evaluation of the gradient of the
objective function in the optimization context.
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Figure: Error for the integral 
equation Maxwell solver (green 
points) compared to Finite 
Difference Time Domain (FDTD) 
and other numerical methods 
with respect to (left) number of 
points per wavelength and 
(right) time required. ([1] C. 
Sideris et al, ACS Photonics, 6, 
2019)



Results

The modulus (top) and real part (bottom) of the field at 1.31 micron 
strongly coupling to the top grating coupler as designed.

The modulus (top) and real part (bottom) of the field at 1.55 micron 
strongly coupling to the bottom grating coupler as designed.

Inverse design of both the top and bottom grating couplers was used to optimize the geometric parameters of the grating coupler "teeth" width 
and spacing to couple to 1.31 micron in the top layer, and 1.55 micron in the bottom layer, as shown in the figures above. Notice that the 
inverse designed top and bottom couplers successfully allow wavelengths other than 1.31 micron (coupling strongly to the top layer) to pass 
through the top layer and strongly couple to the bottom layer. This provides an example of the innovations waiting to be discovered with 
inverse design of photonics, enabling non-intuitive and novel methods of spatial and spectral mode de-multiplexing. 



Results

A) The modulus of 1.31 microns, and B) 1.55 micron, showing the fields strongly coupling to the top and bottom grating couplers respectively.  
C) The frequency response of the fields showing the spectral response function of the inverse designed multi-layer grating couplers.

A) B)

C)
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