

Virtual Research Presentation Conference

Geometric Motion Planners for Highly-Constrained Environments

Principal Investigator: Joshua Vander Hook, 397 hook@jpl.nasa.gov

Co-Is: 347: Saptarshi Bandyopadhyay, Viet Nguyen, & William Seto; 312: Zaki Hasnain Program: Spontaneous Concept Acknowledgements: Ryan Harrod, Michael Trowbridge

Assigned Presentation # RPC-260

Abstract

A fundamental problem for **autonomous spacecraft** is **planning motion** without violating **motion constraints** imposed by mission designers or safety concerns. For example: avoiding slewing an instrument to point at the spacecraft body, or not pointing a radiator at a heat source. This is called constrained motion planning.

We evaluate **geometric methods** for generating **a sequence of control setpoints** for a spacecraft or robot in highly constrained environments. If an optimal controller follows these setpoints, the resulting trajectory is guaranteed to be minimal cost.

Example of trajectory optimization

- 1. Current pose to moving desired pose subject to a maximum change rate!
- 2. Solution, constraint free, is passed to a control algorithm for path following.

Example of constrained trajectory optimization

- 1. Current pose to moving desired pose. Maximum change rate!
- 2. Solution, constraint free, cannot be followed.

Example of constrained trajectory optimization

- 1. Current pose to moving desired pose. Maximum change rate!
- 2. Solution, with safe segments, is passed to a control algorithm for path following.

Abstract

A fundamental problem for **autonomous spacecraft** is **planning motion** without violating **motion constraints** imposed by mission designers or safety concerns. For example: avoiding slewing an instrument to point at the spacecraft body, or not pointing a radiator at a heat source. This is called constrained motion planning.

We evaluate **geometric methods** for generating **a sequence of control setpoints** for a spacecraft or robot in highly constrained environments. If an optimal controller follows these setpoints, the resulting trajectory is guaranteed to be minimal cost.

Agility Envelope (actuators)	$f(\vec{\omega}) \le \gamma$ $f(\vec{\omega}) \le \gamma$
Type I (static hard)	$\mathbf{v}(t)^T \mathbf{w} \le \cos \theta$
Type II (static soft)	$\int_{t_a}^{t_b} \mathbf{v}(t)^T \mathbf{w} dt \le \phi$
Type III (dynamic hard)	$\mathbf{v}(t)^T \mathbf{w}(t) \le \cos \theta$
Type IV (mixed)	Formations/thrusters

Table by Michael Trowbridge

Image by Ryan Harrod

Abstract

A fundamental problem for **autonomous spacecraft** is **planning motion** without violating **motion constraints** imposed by mission designers or safety concerns. For example: avoiding slewing an instrument to point at the spacecraft body, or not pointing a radiator at a heat source. This is called constrained motion planning.

We evaluate **geometric methods** for generating **a sequence of control setpoints** for a spacecraft or robot in highly constrained environments. If an optimal controller follows these setpoints, the resulting trajectory is guaranteed to be minimal cost.

Agility Envelope (actuators)	$f(\vec{\omega}) \le \gamma$ $f(\vec{\omega}) \le \gamma$
Type I (static hard)	$\mathbf{v}(t)^T \mathbf{w} \le \cos \theta$
Type II (static soft)	$\int_{t_a}^{t_b} \mathbf{v}(t)^T \mathbf{w} dt \le \phi$
Type III (dynamic hard)	$\mathbf{v}(t)^T \mathbf{w}(t) \le \cos \theta$
Type IV (mixed)	Formations/thrusters

Table by Michael Trowbridge

Image by Ryan Harrod

Abstract

A fundamental problem for **autonomous spacecraft** is **planning motion** without violating **motion constraints** imposed by mission designers or safety concerns. For example: avoiding slewing an instrument to point at the spacecraft body, or not pointing a radiator at a heat source. This is called constrained motion planning.

We evaluate **geometric methods** for generating **a sequence of control setpoints** for a spacecraft or robot in highly constrained environments. If an optimal controller follows these setpoints, the resulting trajectory is guaranteed to be minimal cost.

Agility Envelope (actuators)	$f(\vec{\omega}) \le \gamma$ $f(\vec{\omega}) \le \gamma$
Type I (static hard)	$\mathbf{v}(t)^T \mathbf{w} \le \cos \theta$
Type II (static soft)	$\int_{t_a}^{t_b} \mathbf{v}(t)^T \mathbf{w} dt \le \phi$
Type III (dynamic hard)	$\mathbf{v}(t)^T \mathbf{w}(t) \le \cos \theta$
Type IV (mixed)	Formations/thrusters

Table by Michael Trowbridge

Image by Ryan Harrod

Methodology

Formulation: We treat the problem as planning motion through a controllable space like two or 3d areas, with prohibited control areas that change with time

Innovation was to separate paths into geometric components that can be solved in closed form and to stich them back together to come up with the optimal solution

We tested the hypothesis that this method would converge faster and to better solutions by implementing the geometric algorithm and comparing directly on a challenging problem set

Methodology

Formulation: We treat the problem as planning motion through a controllable space like two or 3d areas, with prohibited control areas that change with time

Innovation was to separate paths into geometric components that can be solved in closed form and to stich them back together to come up with the optimal solution

We tested the hypothesis that this method would converge faster and to better solutions by implementing the geometric algorithm and comparing directly on a challenging problem set

Research Presentation Conference 2020

Research Presentation Conference 2020

Results

√:

- a) Completed implementation of R^3 exact planner
 - a) Easily extended to higher dimensions
- b) Filled missing gap in literature
 - a) Provably optimal solutions
 - b) Provably minimal time cost for fast convergence
- *c)* New guarantees about cost and solution quality! NTR 51773

Approach	Type I	Type II	Type III	Type IV	Convergence
Geometric	JPL	\bigcirc	JPL	JPL	JPL
Potential Function	\checkmark		\checkmark	\bigcirc	Ģ
Constraint Monitoring	\checkmark	\checkmark	\checkmark	\checkmark	
Randomized	\checkmark	\checkmark	\checkmark	\checkmark	
SDP	\checkmark	*	\checkmark	\checkmark	🗯 💭
im et al. 2004	🧼 New s	ince 2004	洋 Flaw ir	n proof	Ambiguous: poss

Results

√:

- a) Completed implementation of R^3 exact planner
 - a) Easily extended to higher dimensions
- b) Filled missing gap in literature
 - a) Provably optimal solutions
 - b) Provably minimal time cost for fast convergence
- *c)* New guarantees about cost and solution quality! NTR 51773

Approach	Type I	Type II	Type III	Type IV	Convergence
Geometric	JPL	\bigcirc	JPL	JPL	JPL
Potential Function	\checkmark		\checkmark	\bigcirc	Ģ
Constraint Monitoring	\checkmark	\checkmark	\checkmark	\checkmark	
Randomized	\checkmark	\checkmark	\checkmark	\checkmark	
SDP	\checkmark	*	\checkmark	\checkmark	🗯 💭
im et al. 2004	🧼 New s	ince 2004	洋 Flaw ir	n proof	Ambiguous: poss

Recommended Next Steps

- a) Study in mission context (OCO-3 or a Pre-phase A concept)
- b) Extensions to objective-based planning in addition to constraints
- c) Advanced concepts funding for NSPO / DARPA

Publications and References

(from AI Group Michael Trowbridge 2020)

Method	Papers	Missions		
Direct waypointing (geometric)	Random: Frazzoli et al. 2001, Cheng et al. 2004 A*: Kjellberg and Lightsey, 2013	A*: Bevo-2, ARMADILLO 3U CubeSats		
Constraint Monitor	Singh et al. 1997, Raymann et al. 2000	Cassini, Deep-Space 1		
Potential Functions/Barrier Functions	McInnes 1994, Spindler 1998,, Ramos and Schaub 2018			
Semidefinite Programming	Kim et al. 2004			

Principal Investigator: Joshua Vander Hook, 397 hook@jpl.nasa.gov

Co-Is: 347: Saptarshi Bandyopadhyay, Viet Nguyen, & William Seto; 312: Zaki Hasnain

Program: Spontaneous Concept Acknowledgements: Ryan Harrod, Michael Trowbridge

© 2020 California Institute of Technology. ALL RIGHTS RESERVED. United States Government Sponsorship acknowledged. CL#20-2431