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Abstract

A fundamental problem for autonomous spacecraft is planning motion without violating motion constraints imposed 
by mission designers or safety concerns. For example: avoiding slewing an instrument to point at the spacecraft body, or 
not pointing a radiator at a heat source. This is called constrained motion planning.

We evaluate geometric methods for generating a sequence of control setpoints for a spacecraft or robot in highly 
constrained environments. If an optimal controller follows these setpoints, the resulting trajectory is guaranteed to be 
minimal cost.

Tutorial Introduction



1. Current pose to moving desired pose subject to a maximum change rate!

2. Solution, constraint free, is passed to a control algorithm for path following.

Example of trajectory optimization



1. Current pose to moving desired pose. Maximum change rate!

2. Solution, constraint free, cannot be followed. 

Example of constrained trajectory optimization



1. Current pose to moving desired pose. Maximum change rate!
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(actuators)

𝑓 𝜔 ≤ 𝛾
𝑓 𝜔̇ ≤ 𝛾

Type I (static hard) 𝐯 𝑡 !𝐰≤ cos𝜃

Type II (static soft)
-
"!

""
𝐯 𝑡 !𝐰 𝑑𝑡 ≤ 𝜙

Type III (dynamic hard) 𝐯 𝑡 !𝐰(𝑡) ≤ cos𝜃

Type IV (mixed) Formations/thrusters

Table by Michael Trowbridge
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Formulation: We treat the problem as planning 
motion through a controllable space like two or 3d 
areas, with prohibited control areas that change 
with time

Innovation was to separate paths into geometric 
components that can be solved in closed form and 
to stich them back together to come up with the 
optimal solution

We tested the hypothesis that this method would 
converge faster and to better solutions by 
implementing the geometric algorithm and 
comparing directly on a challenging problem set

Methodology
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Results
a) Completed implementation of 𝑅! exact planner

a) Easily extended to higher dimensions

b) Filled missing gap in literature
a) Provably optimal solutions

b) Provably minimal time cost for fast convergence

c) New guarantees about cost and solution quality!
NTR 51773

Many unconverged!

OMPL (median 1-2s)

Ours (median <1)
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a) Study in mission context (OCO-3 or a Pre-phase A concept)
b) Extensions to objective-based planning in addition to constraints
c) Advanced concepts funding for NSPO / DARPA

Recommended Next Steps
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