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Abstract

This project brings new mathematics into practical data 
assimilation (DA) and uncertainty quantification (UQ) 
applications that commonly arise in Earth Science. We develop 
a joint atmospheric state and model parameter estimation 
framework that combines traditional data assimilation with 
machine learning. We apply the framework to idealized 
nonlinear models to quantify model sensitivity to changes in 
model construction and initial conditions. This research requires 
new mathematics, new computational methods, and an 
understanding of atmospheric physics. The methods developed 
for this particular research question are expected to be 
extensible to a wide range of remote sensing and numerical 
modeling topics.

Tutorial Introduction

Schematic for the proposed simultaneous state and parameter 
estimation algorithm. The left graph shows the iterations (vertically) of 
the machine learning (ML) algorithm as it optimizes the parameters θ. 
At each iteration, a data assimilation (DA) method is used to update the 
model outputs (orange lines) based on the observations (blue dots).



Context (Why this problem and why now)
• In DA, typically the state of the system is updated, but the model construction is not. This means that the model error 

is not addressed. Estimation of the state is often straightforward, but the model error is often complex and nonlinear.
• It is necessary to develop new methodologies that are capable of informing both the state of the system and the 

model itself.

SOA (Comparison or advancement over current state-of-the-art)
• The state of the art in simultaneous state and parameter estimation is to simply re-use data assimilation methods, and 

append a list of model parameters to the model state vector. 
• Our approach solves joint linear (state estimation) and nonlinear (model parameter estimation) using a combination of 

traditional data assimilation and machine learning methodologies. The techniques we are using have never before (to 
our knowledge) been applied to problems in Earth System Science.

Relevance to NASA and JPL (Impact on current or future programs)
• Quantification of uncertainty is a crucial part of the design of any new mission, and many UQ efforts founder on the 

rocks of nonlinearity and model error / state error interaction. 
• The development of a new set of tools, generally applicable to a wide range of models and research questions, will 

enhance JPL’s ability to robustly determine in advance the information contained in a set of proposed measurements. 
• A more robust treatment of uncertainty will lend additional credence to JPL’s mission proposals.

Problem Description



Formulation, theory or experiment description

• Utilize ensemble Kalman filter methods for (linear) state estimation

• Implement Global Bayesian Optimization for (nonlinear) model 
parameter estimation.  GBO uses statistical emulators to 
approximate the model-observation mismatch and find optimal 
parameter values

• Test the combined EnKF – GBO methodology in two well-known 
nonlinear models (Lorenz, 1963; 1996)

Innovation, advancement

• While EnKF has been used extensively for state estimation, it 
often fails for nonliear model parameters

• GBO has been used in optimizing advertising schemes online, but 
has not yet been applied to Earth System Science

Methodology

Schematic depicting a single GBO. (A): begin with a set of 
realizations of the objective function J(θ) (orange dots). (B): Fit a 
Gaussian process to these points; shown are the GP mean (black) 
and 2-sigma (blue). (C): Calculate Expected Improvement (EI; red 
line), and propose a new parameter sample θ∗ (red dot). (D): 
Evaluate the objective function at the proposed sample, and add 
the point (θ∗,J(θ∗)) to the set of objective function realizations.



Accomplishments versus goals
• We have met all of the first year goals for this collaborative project. The GBO 

algorithm was successfully applied to both numerical models, and the results 
were presented at the 2019 American Geophysical Union Fall Meeting, and 
have been written up for submission to peer review.

• We will not be able to meet our year 2 and 3 goals, as the student and 
moved on to bigger and better things.

Significance
• The GBO algorithm functioned far better than traditional parameter 

estimation methods
• The combination of linear + nonlinear algorithms has great potential for 

application to a suite of problems with jointly linear and nonlinear 
characteristics.

Next steps
• Submission of a manuscript describing the results for peer review
• Seeking continued funding to support continuation of this work and 

application to atmospheric models 

Results

Parameter estimates from GBO, as a function of GBO 
iteration for each of 3 parameters in the Lorenz ‘63 model.

RMS error between 
the EnKF estimates 
and the true state of 
the system as a 
function of number 
of GBO iterations. 
Best guess from a 
priori (blue), 
augmented state 
(orange), GBO results 
(green), and perfect 
model (purple).
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