

Searching for Neutron Stars in the Dense Stellar Cluster at the Center of the Galaxy

Principal Investigator: Walid Majid (335); Co-Investigators: Thomas Prince (Caltech), Karishma Bansal (NASA, AMES)

Program: FY21 R&TD Strategic Initiative

Strategic Focus Area: The Galactic Center, Dark Matter, and Millisecond Pulsars

Abstract

- The physics of the dense star clusters in the vicinity of the central black holes of galaxies is a topic of great interest in astrophysics.
- Our own Galactic Center (GC) contains the closest massive black hole and is the only nuclear star cluster that we can study in detail.
- Millisecond pulsars (MSPs) have exquisite timing stability and are considered to be precision cosmic clocks
- Finding one such MSP in orbit about the Galactic Center black hole would be a signature discovery
- The DSS-43 antenna of the DSN offers one of the best capabilities of any telescopes for high-frequency detections of MSP in the GC
- The GC harbors a radio loud magnetar, a rare class of neutron stars, offering a window into the magneto-ionic environment of dense stellar clusters

National Aeronautics and Space Administration

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

www.nasa.gov

Objectives

Galactic Longitude [deg]

- K-band Pulsar Survey of the GC
- Multipath scattering in the interstellar medium broadens pulses with sharp frequency dependence
- We have built a state-of-the-art pulsar backend that operates at K-band (17-27 GHz) in Canberra • DSS-43 is the most sensitive single dish radio telescope in the southern hemisphere
- $\ensuremath{\cdot}\xspace$ We are carrying out a survey of the inner few arcminutes around the GC region

High Frequency Observation of Magnetars

- Magnetars are a rare class of neutron stars with very high magnetic fields, providing the main engine for intense high energy outbursts
- Magnetars have flat radio spectra and are best studied at high radio frequencies, where the
 effects of interstellar medium are greatly reduced
- . We are carrying out observations of active magnetars following high energy outbursts

Novel Detection Algorithms

 Searching for pulsars in binary systems with orbital periods longer than the duration of observations has been a computationally prohibitive task due to the large phase space, consisting of Keplerian parameters

• We are working on developing novel coherent search techniques that are capable of carrying out pulsar searches with higher derivative terms

• We plan to test and validate coherent search techniques by searching for pulsars in globular clusters, where a large number of MSPs have been identified

Publications

[A] Pearlman, A. B., Majid, W. A., Prince, T. A., et al., "Bright X-ray and Radio Pulses from a Recently Reactivated Magnetar", Submitted for publication in Nature Astronomy, arXiv:2005.08410.

[B] Bansal, K., Pearlman, A. B., Majid, W. A., Prince, T. A., et al., "Simultaneous Radio and X-ray Observations of Radio Magnetar J1818-1607", in prep (2021).

Pl/Task Mgr Contact Email: Walid.A.Majid@jpl.nasa.gov

Results

Multi-frequency Observation of Magnetars

- Detailed study of single pulses from XTE J1810-197 in both radio and X-ray
- Post-outburst studies of the new member of the radio magnetar class, Swift J1818

Carried out K-band survey of the GC using DSS-43 before long downtime

- We have obtained 95 hrs of K-band data on the GC, including surrounding region
- · Data quality problems persisted at DSS-43
- Developed a suite of tools aimed at cleaning and removing instrumental artifacts from the data
- Large computation cost with some degradation of sensitivity due to data quality issues
- Development of novel search techniques
- Efficient sub-band search technique for single bright, but narrowband pulses
- Dynamic programming method for pulsar searches in

Clearance Number: RPC/JPL Task Number: R18032