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Objectives

 Develop a wide-swath, high resolution, compact remote sensing instrument concept, namely HIMAP, to fill the capability gaps of the vertical/horizontal resolution and the spatial coverage for the measurements of gaseous pollutants (O3, NO,) and aerosols, three
Explorer-class observables identified by 2017-2027 Earth Science Decadal Survey (ESDS, see ref. 1).

* Craft operation concepts targeting at the Earth Venture and the Explore Class missions, in which HIMAP serves as a core payload in the new generation of NASA Earth System Observatory, to address three air quality-related objectives ranked "MOST IMPORTANT”
in the ESDS.

« l|dentify and advance the TRL of HIMAP’s key technologies
Background

Figure 1. The capability gaps of space missions for air quality.
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of gaseous pollutants (O3, NO,) and aerosols as high priorities to be targeted in the Earth Venture and Ozone and Trace Gas Earth Explorer missions HIMAP vs MLS, Conventional
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Developed operation concepts (see Figure 3) which will address the high priority science objectives illustrated in the ESDS, through (1) HIMAP’s unique
capability to enable 3-D mapping of pollutants in NSL; (2) Synergistic measurements of HIMAP, Continuity Microwave Limb Sounder (CMLS; PIl: Nathaniel

Livesey) and CubeSat Infrared Atmospheric Sounder (CIRAS; Pl: Thomas Pagano) to augment science return. Figure 4. Broadband metagratings for high spectral resolution polarimetric imaging in the NIR and UV.

|dentified broadband high-efficiency metagratings as HIMAP’s key technologies, and developed the optical system design (see Figure 4).
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