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(1) Development of an “online” JPL-CliMA land model capability: .«
adaptation and integrtation of the existing CARDAMOM land model into H_/ Y Y
Fhe CIiMA framework. to facilitate JPL-CHMA ESM capability, as Based on JPL SRTD focus: collaborative design Existing CliMA ESM components Figure 2. Massoud et al., 2021 (in review). This study 1s a reduced-complexity representation of the CliMA soil hydrology processes tested
informed by the satellltei‘POR. ) - heritage code in partneship with CliMA (funded separately) out at an Amazon watershed, which includes key soil hydrogical parametrizations and associated uncertainties, including porosity, rooting
(2) Development of an “offline™ JPL land model capability, based on the (CARDAMOM ) depth, soi1l water retention and drainage parameters. The CARDAMOM framework was used to optimize the parameters and initial soil

JPL land model adaptations and enhancements achieved in TO1, to

- ) o o ) ) o moisture conditions required to minimize mismatches between modelled and observed (GRACE) equivalent water thickness.
facilitate dedicated scientific and mission formulation OSSE investigation.
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