Ultra-lightweight Deployable Composite RF Apertures

Principal Investigator: Manan Arya (355); Co-Investigators: Richard Hodges (337), Jonathan Sauder (355), Stephen Horst (334), Mehran Mobrem (355), Sergio Pellegrino (California Institute of Technology)

Figure 1: Overview of the antenna deployment and stowage concept, illustrated on a standard ESPA-class bus. The primary 1 m x 5 m reflectarray reflector consists of 8 composite strips, which have cross-section as shown in the left inset. Stowage of the main reflector includes two steps: first the strips are folded and flattened into a long, thin "stack" of strips, and second the strips are wrapped into a compact cylindrical form.

Objective: Our objective was to advance a novel architecture for deployable planar radio frequency (RF) apertures. In FY21, our goals were to (1) demonstrate, through detailed structural finite element analysis (FEA), high stiffness (first fundamental structural frequency > 0.5 HZ) of the deployed aperture and low thermo-elastic deformation (deformed surface RMS < 2 mm rms) when subjected to inspace thermal loading; and (2) design, fabricate, and test a prototype aperture, demonstrating both packaging and deployment, and RF performance (both before and after deployment).

Background: State-of-the-art deployable RF apertures for small spacecraft can be divided into 3 categories based on their structural architectures: solid-panels, mesh reflectors, and tensioned membranes. The proposed concept has key advantages over these: lower areal density than solid-panel apertures; higher stiffness and thermal stability than tensioned membranes; and fewer snag hazards and lower touch labor than mesh reflectors. We target a 5 m x 1 m aperture at S-band that can be deployed from an ESPA-class spacecraft with application to the Surface Deformation and Change (SDC) observable per the 2018 Earth Science Decadal Survey.

National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology Pasadena, California	Approach : In FY20, we converifying fabrication methods fabrication error was correct article 1. The facesheets and unidirectional plies of Quartz a focal length of 3.5 m, and plane is realized as photolit Pyralux). The ground plane which meets the goal of <80
www.nasa.gov	Test article 2 was RF tested initial pre-stowage RF test, 7 mechanism. This mechanis stowage and deployment, t patterns repeated to a high o
Copyright 2021. All rights reserved.	

Program: FY21 R&TD Topics Strategic Focus Area: Direct/Coherent Detectors and Arrays

Figure 2: Test article 2 mounted at the 60-ft chamber at the JPL Mesa antenna test range, after having been stowed and deployed.

onstructed reflector test article 1 (full-scale 1 m width, and 1/3-scale length of 1.67 m). This was critical in Is and RF performance. Due to a systemic fabrication error, test article 1 could not be fully stowed. In FY21, this cted, and test article 2 (Figure 2) was constructed. Test article 2 has identical dimensions and materials as test and the S-springs are constructed using state-of-the-art quartz composites ([90/0/90] preforms of spread-tow zel fiber in TP402 epoxy matrix, total cured thickness of 120um). The reflectarray pattern was designed to have consists of an 18 x 84 array of cross-shaped elements (with 59 mm center spacing). The reflectarray element thographically etched copper (9 um thickness) on 25 um-thick polyimide film (commercially available Dupont is a layer of unetched Pyralux material. Test article 2 has a mass of 1.234 kg and an areal density of 787 g/m², 00 g/m² areal density.

ed before and after deployment, see Figure 2. A custom feed was used to illuminate the reflectarray. After an the reflectarray was stowed and deployed. Figure 3 shows the deployment, using a stowage-and-deployment sm uses tensioned membrane straps to coil and consolidate the folded-and-flattened strips. After successful the reflectarray was re-mounted at the RF test stand and re-measured. As shown in Figure 4, the antenna degree, showing minimal impact of the stowage and deployment process.

RF performance.

U, Magnitude +9.091e-01 +8.333e-01 +7.575e-01 +6.818e-01 +6.060e-01 +5.303e-01 +4.545e-01 +3.788e-01 +3.030e-01 +2.273e-01 +1.515e-01 +7.575e-02 +0.000e+00

Figure 5: Based on a structural finite element (FE) model of the full-length 5 m x 1 m reflectarray created in Abaqus/Standard, the predicted lowest structural frequency is 1.69 Hz, with a mode shape illustrated.

stowed and deployed. The patterns match each other to a high degree, showing that folding and deployment had minimal impact on

Clearance Number: RPC/JPL Task Number: R20132