
Objective: to develop a software framework to provide a machine-learning-assisted autonomous driving capability for future rovers to 
enhance efficiency and bring the technology to TRL4.
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Core Idea: Experienced rover drivers have 
an intuition about which paths are safe. Our 
new algorithm, MLNav, mimics this intuition 
through a learning-based search heuristics, 
while guaranteeing safety by running the 
same, computationally expensive collision 
checking as ENav, called ACE, only on top-
ranked paths.

Simulation on M2020’s Sol 122 terrainApproach: In a nutshell, MLNav is a search-based path planner that uses learned 
heuristics, where the safety of the chosen path is guaranteed by running a model-
based collision checker. A single run of the MLNav heuristic takes a heightmap of 
terrain as an input and outputs the predicted outcomes of ENav's computationally 
demanding collision checking, ACE, at every cell of the map for multiple headings. It 
employs the U-net model, trained in a supervised manner with a training dataset 
collected by running ACE numerous times on synthetic terrains in ENav Sim. The 
path options are ranked by MLNav heuristics and other cost metrics, where ACE is 
run only on the top-ranked paths until a feasible path is found.
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Results: The table shows quantitative results, 
evaluated by 1,500 Monte-Carlo runs each. 
Improvement in success rate on complex 
terrains from 69.9% to 78.8% was achieved 
together with 31% reduction in path inefficiency 
and 36% reduction in overthink rate. MLNav
successfully ran on real Mars terrain data from 
Perseverance on Sol 122 and 178. This result is 
particularly remarkable because the training 
data that we used for this experiment was 
produced solely with synthetic terrains before 
the landing of the rover. 


