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Objectives
• The objective of this project is to develop a customized real-time prediction system for 

atmospheric noise temperature (Tatm), which is the input to the telecommunication link 
model, for Deep Space Network (DSN) tracking sites using machine learning (ML). 

• We focus on Ka-band (32 GHz) communication links that will be demonstrated for 
possible use by the Europa Clipper mission. 

• The prediction system of zenith Tatm with uncertainty quantification (UQ) will be 
developed, with forecast lead time of 1-16 days. 

• In FY21, we focused on developing the forecast system at Goldstone, CA. 
• This forecast system will be adopted to other tracking sites and expanded to predict 

other atmospheric variables when in-situ observations become available.

Background
• Ka-band (32 GHz) communications links are far more sensitive to weather degration

than X-band (8.4 GHz). 
• Current models for the Ka-band downlink data rates are quite conservative, accounting 

for 90% weather availability. The Europa Clipper mission is using a 3 dB margin. This 
approach can result in wasted downlink capacity. 

• Recent studies showed that using real-time weather forecasting can increase data 
return and the reliability of the communication links. 

Significance/Benefits to JPL and NASA
• This project proposes to provide direct support to the operation of the Europa Clipper 

mission and other flight projects using the DSN. 
• This project is aligned with JPL’s strategic goals to achieve “seamless, higher rate, 

larger volume data and information delivery” and enable more productive and impactful 
space missions for the ultimate quest of life beyond Earth and other scientific 
investigations. 

• The ML model for predicting Tatm can be generalized to many other missions in which 
data communications are essential. It could serve as a universal component of future 
onboard data prioritization protocol.
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Approach

Figure 1.  Workflow of the Machine Learning-based forecast system.

Results

• In FY21, we have trained a ML model with the historical 
weather forecasting data from NCEP Global Forecast System 
(GFS) and the in-situ observations of Tatm at Goldstone, CA 
from 2015 to 2020. 

• 24-hour forecasts of Tatm are used as the demonstration case 
of the forecast system. 

Figure 2. (a) Observed (AWVR) vs forecasted (Fcst) Tatm (K); (b) Forecast RMSE 
(K) sampled by forecasted Tatm. X-axis in Figure b is the percentile range (%) of the 

forecasted Tatm; values inside parentheses are the corresponding ranges of the 
forecast Tatm (K). Data from 2015 to 2020. 

Figure 3. Quantile plot of (a) bias and (b) standard error from the Uncertainty 
Quantification model. The red numbers represent the value for each decile.

Figure 4. Forecast Gain (∆Eb/N0, dB) relative to the 90% 
weather availability versus mean Tatm for different elevation angle 
cases at Goldstone, CA. Error bar represents the forecast error.

Table 1. List of Tatm predictors used in the machine 
learning forecast model.

Summary
• The forecasted Tatm has good agreement with the observations, 

especially when the observed Tatm is less than 20 K (Fig. 2a). 
• The RMSE of all the forecasts is 4.68 K. 
• The RMSE increases with the increase of Tatm. 90% of the 

samples has RMSE less than 4 K (25% relative to the mean Tatm) 
for fair-weather conditions with Tatm < 17 K (Fig. 2b).

• Most of the forecasts have a bias lower than 1 K (Fig. 3a). 
• At the low-end of Tatm= 9 K, one can realize a forecast gain of 

1.6±0.16 dB (44% more data) at 20° elevation angle (Fig. 4). 
• A real-time forecast system has been developed to produce 24-

hour forecasts of Tatm at Goldstone, CA.
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