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Objectives

The high-level objective of this project is to develop and
demonstrate the use of a new machine learning technology
called Kernel Flows (KF) [1] which, when combined with
Gaussian Process (GP) prediction, emulates complex physical
forward models at the core of remote sensing retrieval
algorithms. GP’s model a correlated field in the model’'s input
space as an infinite dimensional Gaussian distribution with a
covariance structure- the kernel- having parameters estimated
from data. KF is a method for learning the kernel (and its
parameters) from data. We refer to the use of this kernel to carry
out GP prediction as a Kernel Flows emulator (KF emulator).

The specific objectives of this project are to 1) implement a KF
emulator for the forward model used by NASA's upcoming
Surface Biology and Geology (SBG) mission, including radiative
transfer calculations; and 2) quantify the performance
characteristics of this KF emulator, and compare them to those of
the most commonly used methods of increasing forward model
speed in operational retrievals in imaging spectroscopy
applications.

Background

The direct motivation for this research is the need to be run very
large numbers of retrievals in the context of uncertainty
quantification. Retrievals for mission like SBG and other Earth
System Observatory missions (indeed also for existing missions
like OCO-2/3, MLS, and AIRS) are computationally intensive
largely because the forward models embedded inside them are
computationally intensive, and because they must be run
multiple times in an iterative search. Quantifying uncertainty on
retrieval outputs using techniques like those described in [2]
require repeating those retrievals many times to create a
distribution of outputs. It is simply not feasible to do this using
full-physics models.

The use of emulators to relieve computational burden in this
setting is not new. “Look-up tables” have been traditionally used
in the remote sensing community as a sort of poor-person’s
emulator. Neural networks have also achieved impressive
performance [3,4] as emulators, but neither of these approaches
can quantify the uncertainty they induce because they are not
based on probability models. KF emulators, which are based on
GPs, can quantify this uncertainty.
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Approach and Results (1)

Our approach is to emulate the radiative transfer (RT) portion of the SBG forward model as
shown in Figure 1. We fit a GP to a training set of RT inputs and outputs to learn a predictor
(and its uncertainty) into which a new input can be fed. RT inputs are atmospheric properties
(xatm): water vapor and aerosol optical depth. RT outputs are path radiance (r), transmittance
(t), and spherical albedo (s).

Forward model:
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Figure 1. We replace the computationally expensive radiative transfer model with a KF emulator.
Tilde indicates estimates, and T indicates vector or matrix transpose.
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Figure 2. The Kernel Flows algorithm uses training data to estimate the covariance structure (K)
of the (centered) input data. Then, when a new input is encountered, a new output is estimated
by Gaussian Process prediction (with uncertainty, . ¢ ).

Approach and Results (2)

The most difficult part of fitting a GP is estimating its covariance function (kernel), K. For stationary, isotropic processes, it's relatively
easy to fit a parametric kernel of pre-defined form by estimating its parameters from data. However, stationarity and isotropy are
restrictive assumptions that may not be realistic. For nonstationary, anisotropic fields, KF deforms the input space by iteratively
minimizing a loss function that compares the quality of output predictions derived from samples, to predictions made from subsamples
taken from those samples. At each iteration, the input points are moved (slightly) in the direction that makes the loss smaller. In the
deformed space, the stationary, isotropic covariance assumption does hold.
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Figure 4. Radiance vectors from the SBG forward model
using true (RT, in blue) and emulated (red) radiative
transfer. The blue spectrum is y! and the dashed red
spectrum is y# in Figure 1. Scene is one pixel in the
Beckman Lawn test case [7].
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Figure 3. Nonparametric Kernel Flows applied to the “Swissroll Cheesecake” example [1]. Input data lie in a two-dimensional space,
and output (in this example) are binary (+1/-1). In 200 iterations, the input data are successively deformed in a way that increases the
ability to predict the output as quantified by the Kernel Flows loss function (here, “leave-one-in”). Panels show current data positions at
25-iteration increments. Deformations are determined from randomly selected subsamples (training data, circles) at each iteration, but
applied to all data including “test” points (stars).
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Significance

JPL and NASA missions are in need of rigorous uncertainty quantification (UQ) for their data products in order to enable rigorous
hypothesis testing and confirmatory analysis. At present, computational bottlenecks due to expensive forward models embedded in
retrieval algorithms prevent large-scale Monte-Carlo-based implementation of UQ methods that would produce these uncertainties.
Emulators have the potential to break this bottleneck by providing fast, accurate approximations to forward models, along with estimates
of the emulator’s own prediction uncertainties. KF provides a flexible, computationally efficient way to learn information required without
difficulties encountered in maximum likelihood or Bayesian estimation, and without restrictive assumptions.

SBG provides a particularly timely and useful testbed for developing KF. Recent work [5, 6] show the importance of quantifying
uncertainties of retrieval estimates for achieving the science objectives of the mission. Further, as data volumes for new and existing
missions grow, it becomes harder to keep up with processing. This is already a problem for OCO-2: the data set is now so large that
reprocessing all of it is not feasible. Future missions like SBG may have no choice but to use forward model emulators in their retrieval
algorithms. KF emulators not only enable proper UQ, but will position JPL to meet the challenges of future mission data processing.
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