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Objectives and Background

The main objective of this RTD is to develop a multi-
spacecraft architecture for exploring fast-moving and
long-period objects such as interstellar objects
(ISO), addressing the key technology risks in artificial
intelligence-based autonomous guidance and control in
very time constrained conditions.

The most significant challenge for ISO mission concepts,
and the driver for this proposal, results from the
unpredictable orbits of long-period objects, with generally
high inclinations and high relative velocities. It is easier to
encounter them when they cross the ecliptic but the
relative velocity between a target body and the
spacecraft  constellation is >30 km/s. These
considerations imply a short encounter duration between
the spacecraft fleet and the target, requiring fast
response autonomous operations while the very high
speeds demand adjustments from far away. Handling
these uncertainties and high-velocity challenges from a

mission  architecture and autonomy standpoint
constitutes the uniqueness of this task.
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Figure 1. Flyby scenario explored in this study.

Figure 2. Space of targets that could be encountered by the flight
systems considered in this study, represented in terms of relative
target-spacecraft velocities and phase angle for pre- or post-
perihelion approach. These targets are based on a synthetic ISO
population developed by Engelhardt et al. (2017).
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Figure 3. Characteristic and performance assessment of the learning-
based terminal guidance and control techniques considered in this task.
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Approach and Results

Task 1 was about developing science to mission requirements flow-down and
mission architecture design for a reference ISO population. We built a database
for a reference population of ISOs based on input from Robert Jedicke et al. from
University of Hawai'i. This database was used to compute possible trajectories,
leading to the design of a reference trajectory, navigation uncertainties and target
position uncertainty, serving as a basis for Task 2.

In order to ensure that the guidance and control requirements and design would
be consistent with current and emerging spacecraft capabilities, we developed
several reference architectures, covering a range of propulsion performance and
assessed telecommunication performance among assets, and for a concept of
operations covering deployment to flyby. The architecture first focused on a single
spacecraft in order to define the input and output of the problem.

Task 2 derived science-driven autonomy and safety-critical autonomous guidance
and control engines for the reference ISO mission designed under Task 1. We
developed online trajectory generation methods with learning adaptation, which
improves upon state-of-the-art off-line optimal trajectory generation for multi-
spacecraft architectures. We also developed autonomous guidance and control
algorithms with tight integration of machine learning. Given the above
architectures and planned trajectories, the algorithms were developed for onboard
trajectory adjustments as necessary to guide the spacecraft for optimal/acceptable
instrument placement.

Task 3 tests this first-year algorithms in the Small Satellite Dynamics Testbed
(SSDT). We tested a baseline controller only using proportional control to control to
desired position and a model predictive control developed as part of Task 2
(Figures 3, 4). The simulations used a reference trajectory developed in Task 1.
These preliminary tests assumed perfect knowledge of the desired ending position.
Position knowledge error was injected by adding noise to the simulated spacecraft
position measurements. Comparisons between the results obtained with the two
control approaches are presented in Figure 5. They show that the model predictive
controller is one order of magnitude more performant than the baseline controller in
terms of the delivery error and for about 25% lower fuel consumption.
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Figure 4. Example of simulation results (delivery

error and delta-V required to meet that delivery

performance) for the MPC controller pursued in
this study (Figure 3).
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proportional control to control to desired position (top table) and the model predictive
controller considered in this study (see Figure 4 and text) (bottom table).
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