
Objectives
The objective was to create a multimodal data fusion and multivariate sequence-to-
sequence transformation tool to estimate groundwater, InSAR subsidence, and soil 
composition data in California’s Central Valley. Given multiple time series data including 
groundwater storage, precipitation, and soil composition data, the state-of-the-art 
groundwater spatio-temporal data estimation models using machine learning showed a 
testing correlation coefficient below 0.8 between the estimated and ground-truth 
groundwater data. Accurate interpolation and estimation of groundwater time 
series data has been challenging due to the different temporal and spatial 
resolution of multiple data sets.

Background
California's Central Valley is responsible for $17 billion of annual agricultural output, 
producing 1/4 of the nation’s food. However, land in the Central Valley is sinking at a 
rapid rate (as much as 20 cm per year) due to continued groundwater pumping. Land 
subsidence has a significant impact on infrastructure resilience and groundwater 
sustainability. It is important to understand subsidence and groundwater depletion in a 
consistent framework using improved models capable of simulating in-situ well 
observations and observed subsidence. Currently, groundwater well data is sparse 
and sampled irregularly, compromising our understanding of groundwater changes. 
Moreover, groundwater pumping data is a major missing piece of the puzzle. Limited 
data availability and spatial/temporal uncertainty in the available data have 
hampered understanding the complex dynamics of groundwater and subsidence.
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Approach and Results
We first integrated multimodal data including InSAR, groundwater, precipitation, and 
soil composition by interpolating data with the same spatial and temporal 
resolutions (every 2 weeks on a 1kmX1km grid) (Figure 1). We then identified 
regions with different temporal dynamics of land displacement, groundwater depth, 
and precipitation (Figure 2). 

We fed the integrated data into the deep neural network of a gated recurrent unit 
(GRU)-based sequence-to-sequence generation model (Figure 3). We found that 
the combination of InSAR, groundwater depth, and precipitation data had predictive 
power for soil composition using deep neural networks (R=0.84, NNSE=0.83). A 
random forest model was tested as baseline (Figure 4). We also achieved 
significant accuracy with only 40% of the training data, suggesting that the model 
can be generalized to other regions for indirect estimation of soil composition.

For uncertainty quantification, we compared the model regression performance 
between the proposed neural network and Random Forest. Neural network models 
showed generally lower aleatoric uncertainty than Random Forest, except for 0-10% 
and 70-80% coarse grain percentages (Figure 5). Central Valley's ground truth high 
coarse grain data (>70%) is limited and therefore experiences high epistemic 
uncertainty in high coarse grain estimation. Epistemic uncertainty can be reduced 
by adding training samples from other regions (e.g., North China Plains that have 
similar subsidence levels).

Our results indicate that soil composition can be estimated using InSAR, 
groundwater depth and precipitation data. In-situ measurements of soil composition 
can be expensive and time consuming and may be impractical in some areas. The 
generalizability of the model sheds light on high spatial resolution soil composition 
estimation utilizing existing measurements.

Significance/Benefits to JPL and NASA
Groundwater and subsidence prediction and management are critical to understanding 
how Earth is changing, a JPL Quest. Our project will help drive JPL to innovate novel 
data processing technologies to estimate future groundwater availability and observe 
Earth’s response to natural and human-induced events (e.g., precipitation, agriculture 
groundwater usage). Our proposed work is directly relevant to the Strategic Theme of 
“Monitoring Freshwater Availability”, identified in the 2018 JPL Strategic Implementation 
Plan’s Earth Science and Applications Directorate. Also, this work will produce a high-
resolution groundwater depletion data set for the Central Valley, as well as a data 
analysis framework that can be applied for study in other global aquifers.
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Figure 1. InSAR-based land 
displacement data interpolation 
process. We first identified the 
region of interest that exhibited 
significant displacement. We then 
rescaled the displacement 
visualization to -80~0 cm to focus 
on the negative displacement. 
Finally, we performed bilinear 
interpolation to fill in the missing 
data. 

Figure 2. Two representative 
regions of the Central Valley with 
significant subsidence with 
different characteristics. (A) 
Chowchilla has been shown to 
maintain monotonically decreasing 
land displacements, less 
fluctuating groundwater depth, 
relatively low precipitation, and 
high fine-grain ratio across the 
middle soil layers. (B) Helm, on 
the other hand, exhibited 
fluctuating land displacements, 
relatively large seasonal changes 
in groundwater depth, high 
precipitation, and a higher overall 
coarse-grain ratio across all soil 
layers. (C) A displacement map 
including Chowchilla and Helm 
(2015-2020). 

Figure 3. Model architecture. We used LSTM to estimate multidimensional time series. The 
system has multiple sigmoid and tanh activation functions to selectively pass information to 
the next layer based on the training process of the final output estimate. The system is inspired 
by the human memory process, which transfers some perceptual information to long-term 
memory based on attention and importance calculated by a value function. Input data include 
groundwater, InSAR subsidence, and precipitation data, covering 8818 different locations, and 
132 biweekly time points (5 years). Here, the coarse grain percent of 10 layers was estimated. 
Coarse-grained soil is defined as containing no more than 50% fine grains (i.e., silt and clay, 
or particles smaller than 0.075 mm).

Figure 4. Deep neural network model of soil 
composition estimation. (A) Example training 
and testing areas randomly selected for 
validation. (B) Ground truth coarse-grained 
ratio of Central Valley in soil layer 1. (C) 
Correlation plot between ground-truth coarse-
grain and the estimated coarse-grain ratios 
(correlation coefficient R=0.84, normalized 
Nash-Sutcliffe model efficiency NNSE=0.83). 
(D) NNSE of neural networks and random 
forest models over various training data ratios 
(0.1-0.9). 

Figure 5. Uncertainty quantification. We 
compared the model regression performance 
between the proposed neural network 
(correlation coefficient r=0.84) and Random 
Forest (r=0.62). Neural network models 
showed generally lower aleatoric uncertainty 
than Random Forest, except for 0-10% and 
70-80% coarse grain percentages. Central 
Valley's ground truth high coarse grain data 
(>70%) is limited and therefore experiences 
high epistemic uncertainty in high coarse 
grain estimation. 


