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Figure 5. The upper plot shows a 80 cm/s planet-induced RV signal that has been injected into HARPS-N-S. The lower plot shows the recovered (predicted) RV signal. 
Coloring is based on training (80%), validation (10%), and test (10%) splits.  

                                              The research was an initial step in enhancing the field of EPRV data reduction by providing the EPRV 
community with a proof-of-concept method for substantially mitigating stellar RV jitter in the wavelength-domain, as well as allowing us 
to begin understanding the data requirements for neural networks in distinguishing between planetary and stellar activity RVs. 

The pre-processing and baseline DL pipelines from this research showed promising results in terms of the applicability of deep learning 
to predict EPRVs for any star. This pilot study greatly aided in preparing and succeeding with both the NASA ROSES-EPRV as well as 
the Topical R&TD proposals, strengthening JPL’s position in the EPRV domain, one of the primary objectives of this proposal.

As methods for mitigating stellar RV jitter improve, the EPRV community will be able to apply these methods to measure more precise 
masses for small, rocky planets like earth. This work forms a basis for improved EPRV observations that could boost the efficiency of 
upcoming missions like HabEx that plan to directly image habitable exoplanets by ~50 % (R. Morgan, EPRV working group report), 
which would improve our chance of detecting biosignatures and propel forward the search for extraterrestrial life. 

1. HARPS-N-S is subjected to a series of 
pre-processing steps that place it on a 
normalized wavelength spectral grid, 
during which small planet-induced RV 
signals are injected into the spectra 
and represents our target for the 
neural network to predict.

2. Training, validation, and test splits - 
given our application of supervised 
learning is focused in the wavelength 
domain and utilizes a single spectra 
per training input, we determined there 
to be less of a need to apply 
sequential, time-based, splits. 
However, we recognize the benefit of 
continuous windows of observations 
when defining the splits and 
developed code to produce 
non-overlapping, sequential, splits. 

3. Rescaling is applied to the 
planet-induced RVs (outputs), and 
dimensionality reduction is applied to 
the normalized wavelength spectra 
(inputs). Due to the increase in size of 
a single HARPS-N-S spectra, many 
in-memory approaches to 
dimensionality reduction were 
infeasible with HPC. This was solved 
by iteratively fitting PCA, via 
incremental principal components 
analysis.

4. Neural network architectures are 
explored and built. The focus was not 
to fully optimize the network 
architecture, but to find something that 
generalized sufficiently well. 

5. Networks are trained using the training 
data.

6. Network’s performance is evaluated 
using the validation data and error 
analysis ensues.

                                  Data Processing Pipeline: Resulting from 
this iterative process, we were able to create a data processing 
pipeline that allows the team to generate new planetary RV 
datasets, for both HARPS-N-S and HARPS-ACB (Figure 3). The 
ability to generate varying planetary RV datasets will enable further 
experimentation and the development of more robust DL-based 
approaches for this problem. 

OBJECTIVE                                          Stellar variability has been known to be 
one of the largest contributors to Extreme Precision Radial 
Velocity (EPRV) noise for almost two decades (e.g., Rupprechet 
et al. 2004). Despite years of improvements in algorithms to 
mitigate stellar Radial Velocity (RV) jitter, it remains the largest 
barrier to RV precision for next-generation instruments such as 
ESPRESSO, EXPRES and NEID (Pepe et al. 2013, Jurgenson et 
al. 2016, Halverson et al. 2016). We focused on using Deep 
Learning (DL) based neural networks to measure small 
planet-induced RVs in the presence of larger amplitude RV 
noise caused by stellar activity. 
Our goal is to develop a proof-of-concept DL-based approach to 
distinguish between planetary and stellar RV signals in the 
wavelength domain. Our work was split across two broad 
categories of work:

● Developing a data processing pipeline to process 
HARPS-North sun-as-a-star spectra (HARPS-N-S). The 
pipeline is capable of inducing a customizable planetary signal.

● Develop a baseline DL architecture to estimate planet-induced 
RVs in the HARPS-N-S data. 
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BACKGROUND                                         Statistical methodologies for 
mitigating stellar jitter in the wavelength domain are not limited by 
the cadence requirements of time-domain mitigation strategies, 
making them a versatile tool for mitigating stellar jitter for any 
observing cadence. Wavelength-domain methods attempt to 
leverage changes in spectral line shapes and/or differences 
between spectral lines that are caused by stellar activity. However, 
stellar RV noise can be caused by pulsations, granulation, 
convective blueshift inhibition, and spot/plage regions, and most 
wavelength-domain methods only model one or two of these 
effects (Figure 1). Neural networks, on the other hand, have the 
potential to model all effects simultaneously, at a greater level of 
complexity than previous algorithms by utilizing all of the available 
information in the spectra. Considering the variety of stellar 
phenomena which contribute to stellar RV noise, and the results of 
our past pilot study with similar data from Alpha Centauri B and de 
Beurs et al. (2020), we believe neural networks are well suited to 
this problem as they are able to capture the complex non-linear 
relationships between the spectral signatures of different kinds of 
stellar variability and RVs that are challenging for traditional EPRV 
approaches to capture. 

APPROACH RESULTS

SIGNIFICANCE

training of neural networks on these data. The code exposes parameters up-front, allowing for quick and readable 
experimentation when modifying approaches to dimensionality reduction, network architecture, network hyperparameters, and the 
number of input planetary datasets, allowing the team to run multiple experiments, expanding our understanding of the feasibility 
of strategies for modeling 
planetary RV signals. Our 
baseline HARPS-N-S 
architecture was trained and 
evaluated on randomized 
train (80%), validation (10%), 
and test (10%) splits for a 
planet-induced RV signal of 
0.8 m/s (Figure 4). The 
network was able to recover 
the planetary RV signal with 
a RMSE of 0.168 m/s on the 
training split; validation 
RMSE of 0.2131 m/s; test 
RMSE of 0.2099 m/s (Figure 
4 and 5). The slightly higher 
validation RMSE, compared 
to the train RMSE, indicates 
some overfitting, while the 
loss curves did show fairly 
good generalization.

Figure 1. Left: Illustration of 
two spatial correlated sources 
of stellar RV jitter: convective 
blueshift inhibition from strong 
magnetic fields and rotational 
RV imbalance caused by 
missing flux in star spots. 
Right: Plot of the RV signals 
versus rotational phase 
corresponding to convective 
blueshift inhibition and 
missing flux.

7. Modifications to the network architecture are performed to alleviate any glaring issues. 
Steps 2-6 are repeated to allow the modified network to be retrained with any updates.
a. Updates to the pre-processing of HARPS-N-S data were necessary as the team’s 

understanding of the data progressed. Each update to the complete HARPS-N-S data 
was followed by executing steps 1-6. 

8. The final network is selected and is scored on the test split.

Figure 2. High-level process that employed for much of the work covered by this 
project. 

Figure 4. The upper plot shows a 80 cm/s planet-induced RV signal that has been injected into HARPS-N-S. 
The lower plot shows the recovered (predicted) RV signal. Coloring is based on training (80%), validation (10%), 
and test (10%) splits.  Figure 3. Varying planetary RV signals resulting from the pipeline - HARPS-ACB 

displayed in this example. RVs are the same across the three plots, but coloring is used to 
highlight the differences in RV signal characteristics.Network In addition, the team developed code to perform the end-to-end 
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