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Figure 5. The upper plot shows a 80 cm/s planet-induced RV signal that has been injected into HARPS-N-S. The lower plot shows the recovered (predicted) RV signal.

Coloring is based on training (80%), validation (10%), and test (10%) splits.
As methods for mitigating stellar RV jitter improve, the EPRV community will be able to apply these methods to measure more precise
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