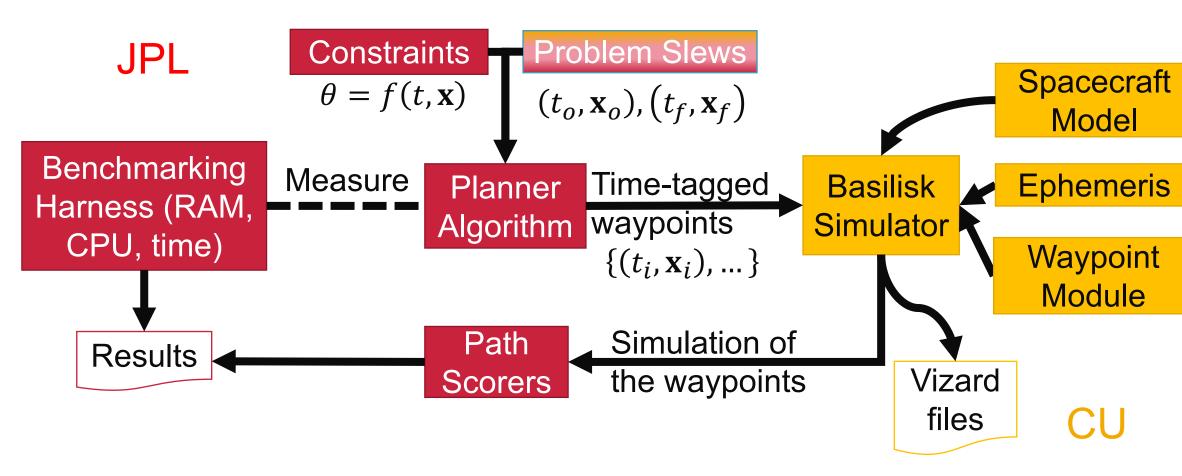


Objectives


Background

1. Turn from (t_0, \mathbf{x}_0)

Approach and Results

Significance/Benefits to JPL and NASA

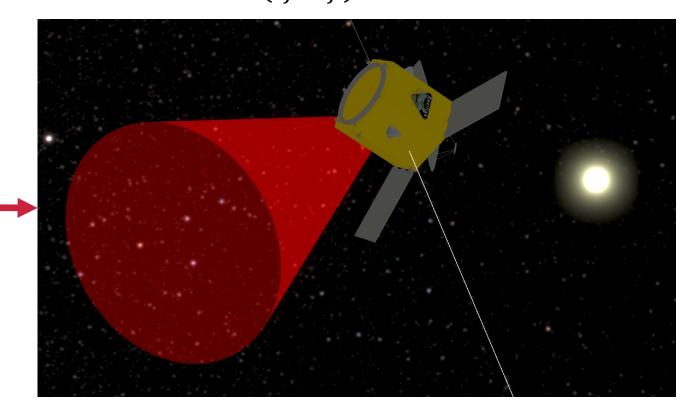
- Better algorithm trade studies possible
- Potential for open algorithm design competitions
- Spur future algorithm development
- Grow the next generation of algorithm designers

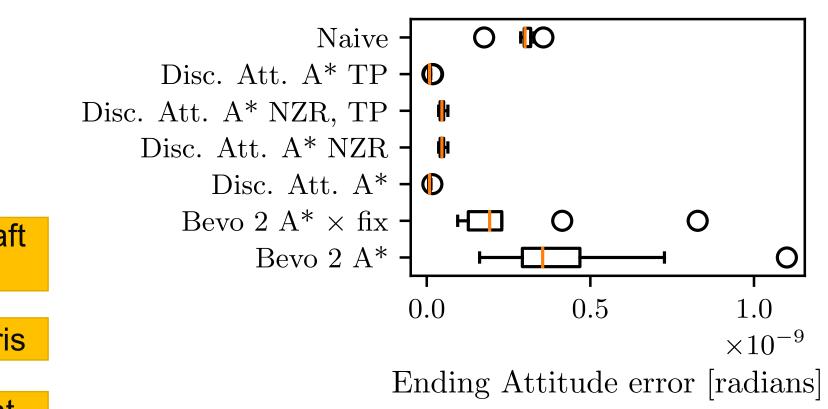
National Aeronautics and Space Administration

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

www.nasa.gov

Spacecraft Attitude Path Planner Integration with the Basilisk Framework


Principal Investigator: Michael Trowbridge (397); Co-Investigators: Joshua Vander Hook (397), Saptarshi Bandyopadhyay (347), Viet Nguyen (347), Riccardo Calaon (University of Colorado), Hanspeter Schaub (University of Colorado)


Program: FY21 R&TD Innovative Spontaneous Concepts

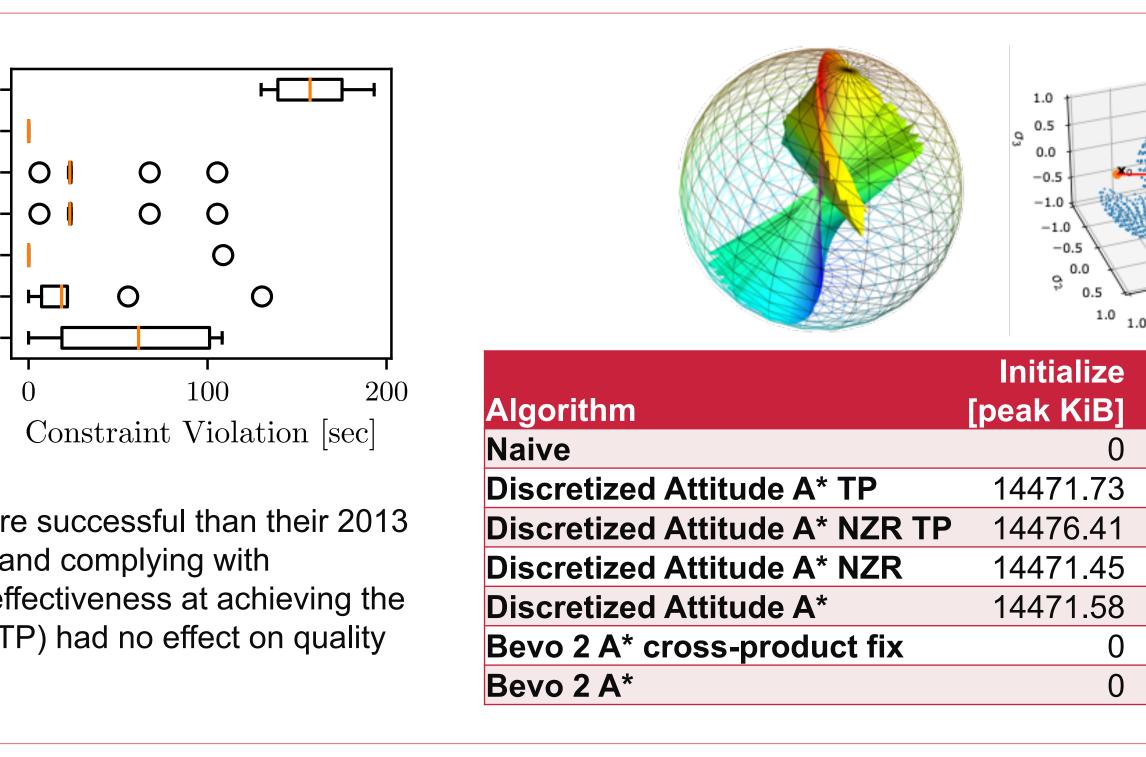
The objective was to prototype an implementation of attitude path planning using components of the University of Colorado Basilisk astrodynamics simulation system [6] and assess the feasibility of using Basilisk in an attitude path planning algorithm benchmarking framework.

3. without putting the Sun in the keep-out cone along the way $(t_i, \mathbf{x}_i), 0 < i < f$

2. to end state (t_f, \mathbf{x}_f)

Naive Disc. Att. A* TP -Disc. Att. A* NZR, TP - O Disc. Att. A* NZR - O I Disc. Att. A^* -Bevo 2 $A^* \times fix \dashv H \square O$ Bevo 2 A* - ⊢⊂

Kjellberg and Lightsey's 2015 Discretized Attitude A* algorithm [8] was more successful than their 2013 Bevo 2 A* algorithm [2] at both achieving the desired ending attitude (left) and complying with constraints (right). Nonzero rate waypoints (NZR) reduced the planner's effectiveness at achieving the goal pose and constraint-compliance. The 2013 algorithm's turn penalty (TP) had no effect on quality when applied to the 2015 algorithm.

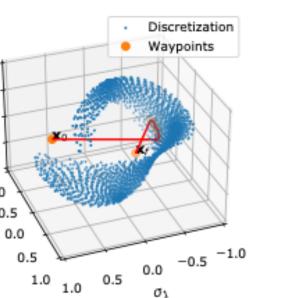

Publications

[1] Riccardo Calaon, Michael Trowbridge and Hanspeter Schaub. "A Basilisk-based Benchmark Analysis of Different Constrained Attitude Dynamics Planners." In 2022 AIAA SciTech Forum (accepted). Jan. 3-7, 2022.

Constraints have form $\theta = f(t, \mathbf{x})$, where ephemeris for separation angles is encoded in f, $\theta > 0$ is safe, and x is attitude state x = $(\vec{\sigma}_N^B, \vec{\omega}_{B/N}, \vec{\alpha}_{B/N})$. Handles Type I (static) and Type III (dynamic) hard constraints from [3], keep-in and keep-out constraints from [8].

Planning algorithms solve the waypoint attitude planning problem statement:

Choose path $\Pi = \left\{ \left((t_0, \mathbf{x}_0), \dots, (t_f, \mathbf{x}_f) \right) \right\}$ s.t. $\theta_i \ge 0 \ \forall t_i \in [t_0, t_f], \forall f_j \in F$


References

- [1] McInnes, Colin R. "Large angle slew maneuvers with autonomous sun vector avoidance." Journal of guidance, control, and dynamics 17.4 (1994): 875-877.
- [2] Kjellberg, Henri C., and E. Glenn Lightsey. "Discretized constrained attitude pathfinding and control for satellites." Journal of Guidance, Control, and Dynamics 36.5 (2013): 1301-1309.
- [3] Kim, Yoonsoo, Mehran Mesbahi, Gurkirpal Singh, and Fred Hadaegh. "On the constrained attitude control problem." In AIAA Guidance, Navigation, and Control Conference and Exhibit, p. 5129. 2004.
- [4] Diaz Ramos, Manuel, and Hanspeter Schaub. "Kinematic steering law for conically constrained torque-limited spacecraft attitude control." Journal of Guidance, Control, and Dynamics 41.9 (2018): 1990-2001.
- [5] Singh, Gurkirpal, Glenn Macala, Edward Wong, and Robert Rasmussen. "A constraint monitor algorithm for the Cassini spacecraft." In Guidance, Navigation, and Control Conference, p. 3526. 1997.
- [6] Kenneally, Patrick W., Scott Piggott, and Hanspeter Schaub. "Basilisk: a flexible, scalable and modular astrodynamics simulation framework." Journal of Aerospace Information Systems 17.9 (2020): 496-507.
- [7] Sucan, Ioan A., Mark Moll, and Lydia E. Kavraki. "The open motion planning library." IEEE Robotics & Automation Magazine 19, no. 4 (2012): 72-82.
- [8] Kjellberg, Henri C., and E. Glenn Lightsey. "Discretized quaternion constrained attitude pathfinding." Journal of Guidance, Control, and *Dynamics* 39.3 (2015): 713-718.

Algorithm families

- Geometric [1]
- Discretized A* [2,8] the type we tested
- Convex optimization, semidefinite programming [3]
- Feedback control laws [4]

The 2013 Bevo-2 attitude algorithm restricts planning to a 2D surface within the 3D attitude space (left), and its inaccurate distance metric produces poor paths (right).

itialize [steady state KiB]	Solve [peak KiB]		Solve [sec]
0	0.00 +- 0.0	0	0.000 +- 0.0
2911.24	108.77 +- 29.6	155.589	3.713 +- 2.3
2922.39	106.94 +- 30.0	155.247	3.619 +- 2.0
2910.94	107.96 +- 28.8	159.279	3.640 +- 2.0
2911.27	107.54 +- 32.5	153.264	3.627 +- 2.1
0	74.40 +- 218.8	0.003	0.203 +- 0.7
0	68.01 +- 181.6	0.004	0.138 +- 0.6

Clearance Number: CL#21-4918 RPC/JPL Task Number: R21216