
# Novel radio occultation experiments to study Venus's sulfur cycle chemistry and potential volcanism

# Principal Investigator: Panagiotis Vergados (335); Co-Investigators: Alexander Akins (386), Tatiana Bocanegra-Bahamon (335), Chi Ao (335), Scott Hensley (334), Sami Asmar (911), Robert Preston (330), Alexander Konopliv (392), David Atkinson (394)



## SIGNIFICANCE TO NASA AND JPL

Our study provides a novel technique to simultaneously retrieve chemical sulfur spe

Allow for the first time an effective separation of the absorption spectra of H<sub>2</sub>

Potentially increase the science return of JPL's VERITAS mission through X

- Contribute to the understanding of Venus's sulfur cycle and to the assessment o
- Could lead to instrument development/modifications that would benefit futur
- Could enable increased global and temporal coverage of planetary atmospheres

National Aeronautics and Space Administration

**Jet Propulsion Laboratory** California Institute of Technology Pasadena, California

www.nasa.gov

### **Program: FY21 R&TD Innovative Spontaneous Concepts**

| ecies in the atmosphere of Venus with the addition of a Ka-band frequency.                                                                     |             |
|------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| $_{2}SO_{4}$ from $SO_{2}$ and observationally retrieve their abundances.<br>K/Ka-band RO observations, with no changes to the mission design. | D.          |
| of Venus's volcanic activity through precise SO <sub>2</sub> measurements.<br>are JPL missions, including the search for life.                 | obs         |
| s, improving our understanding of planetary evolution.                                                                                         | Lar         |
|                                                                                                                                                | 93          |
|                                                                                                                                                | Pa          |
|                                                                                                                                                | Ver         |
|                                                                                                                                                | Tak<br>Hire |

#### REFERENCES

lex B. Akins, and Paul G. Steffes, "Measurements of the Ka Band opacity of sulfuric acid vapor with application towards radio occultations of Venus," *arus*, **351** (Nov 15, 2020): doi:10.1016/j.icarus.2020.113928

Belyaev, Oleg Korablev, A. Fedorova, Jean-Loup Bertaux, A.-C. Vandaele, F. Montmessin, A. Mahieux, V. Wilquet, and R. Drummond, "First bservations of SO<sub>2</sub> above Venus' clouds by means of Solar Occultation in the Infrared", J. Geophys. Res. Planets, **113**: doi:10.1029/2008JE003143

arry W. Esposito, M. Copley, R. Eckert, L. Gates, A. I. F. Stewart, and H. Worden, "Sulfur dioxide at the Venus cloud tops, 1978–1986", J. Geophys. Res., (May 20, 1988): pp. 5267–5276

Paul G. Steffes, Jon M. Jenkins, Richard S. Austin, Sami W. Asmar, Daniel T. Lyons, Eric H. Seale, and Leonard G. Tyler, "Radio Occultation Studies of the enus Atmosphere with the Magellan Spacecraft. 1. Experimental Description and Performance", Icarus, 110 (July, 1994): pp. 71-78

akeshi Imamura, Mayu Miyamoto, Hiroki Ando, Bernd Häusler, Martin Pätzold, Silvia Tellmann, Toshitaka Tsuda, Yuichi Aoyama, Yasuhiro Murata, liroshi Takeuchi, Atsushi Yamazaki, Tomoaki Toda, Atsushi Tomiki, "Fine Vertical Structures at the Cloud Heights of Venus Revealed by Radio Holographic Analysis of Venus Express and Akatsuki Radio Occultation Data", J. Geophys. Res. Planets, **123** (Aug 6, 2018): doi:10.1029/2018JE005627



### **A**PPROACH

**STEP 1:** From Venus International Reference Atmosphere (VIRA) get Venus's background pressure

**STEP 2:** Use Venus Express (VEX) satellite retrievals of  $H_2SO_4$  mixing ratios at X-band to simulate the H<sub>2</sub>SO<sub>4</sub> absorption within 38–56 km at S/X/Ka-band at 1 km vertical resolution [Akins and Steffes,

STEP 3: Initialize our in-house propagation model (available in 386G) with the VIRA background atmosphere and the simulated  $H_2SO_4$  absorptivity profiles at S/X/KA-band.

**STEP 4:** Randomly initialize the free parameters: **a)**  $H_2SO_4$  vapor mixing ratio, **b)** the  $H_2SO_4$  liquid cloud density, and c) the SO<sub>2</sub> mixing ratio at every point within 38–56 km.

STEP 5: These free parameters are input to an objective function that computes the absorptivity at S/X/Ka-band frequencies for the corresponding free parameters abundance profiles using opacity models developed by Paul Steffes and students, and the square of the differences between these newly calculated absorptivity profiles and the assumed true starting absorptivity profiles.

|                          | MILESTONES ACHIEVED                                                                                                                                         |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                          | Key milestones achieved during this proposal concept:                                                                                                       |
|                          | <b>A)Demonstrated</b> H <sub>2</sub> SO <sub>4</sub> retrievals from simulated dual-<br>frequency X/Ka-band RO data paralleling VEX satellite observations. |
| >                        | <b>B)Demonstrated</b> improved H <sub>2</sub> SO <sub>4</sub> retrieval accuracy than that provided by previous or existing missions.                       |
|                          | <b>C)Developed</b> novel software capable to simultaneously retrieve H <sub>2</sub> SO <sub>4</sub> and SO <sub>2</sub> mixing ratios.                      |
|                          | We exceeded expectations by also achieving the following additional milestones:                                                                             |
|                          | D) <b>Demonstrated</b> retrieval of additional physical variables not included in the original proposal such as, the vertical cloud density, and            |
| ng/m <sup>3</sup> )<br>y | E) <b>Developed</b> simulation experiments to relate observing errors to chemical species abundance.                                                        |
| the                      | Currently, we refine our methods for improved products.                                                                                                     |
|                          |                                                                                                                                                             |