
Objective: Beginning with a Combinatorial Testing (CT) tool, inherit its extreme efficiency and thoroughness, but address the CT field’s chronic

un-concern for the human interface and project complexities, e.g. using multiple testing venues, changing hardware and software, admitting

dependencies between variables, injecting faults, debugging test-failures, not-repeating known failures, re-testing fixes, etc. The result will be a

tool enabling non-specialists to become super-human testers.

Background: Combinatorial Testing (CT) is far more thorough, and efficient, at discovering bugs, than expert systems-engineers; more

thorough even than the FAA’s rigorous MC/DC standard; much more efficient than randomized testing. Perhaps you heard of the fatal crash of

a self-driving Tesla, oblivious to a 4-values bug (white truck, bright sky, truck height, and truck angle); nothing but CT can guarantee to catch

such bugs. However, the field’s intense focus on minimums, in test-campaign size, and in generator-algorithm speed, have led to a severe lack

of user-friendliness. Wrapping a CT program with machine learning algorithm C5.0 looked like it would solve those problems.

Approach and Results: We had 12 complaints about the un-friendliness of CT tools. We now know how to solve all but 4 of those complaints!

Machine Learning algorithm C5.0 couldn’t be used as we proposed, for 2 unexpected reasons: #1 The “training sets” C5.0 would need – listing

all the combinations yet to be tested – would be immense; #2 CT test-generators pack as many test-combinations into as few test-vectors as

possible, thus making the diagnosis problem as difficult as possible, for both humans and Machine Learning. A careful mathematical analysis

showed that in realistic CT domains, C5.0 will find up-to-hundreds of incorrect diagnoses.

We solved 8 of our 12 complaints, via (see the Figure at right)

#a An “outer loop” executed infrequently, to describe the system-under-test and the test-campaign desired. The key is a clever CT-generator

program that provides a small specification language for the test-campaign.

#b An “inner loop” executed on a daily basis, as shown. The wrapper is simple, the debugger is not. We investigated several debugging

algorithms, and implemented one, but we’re not “sold”.

#c Retaining C5.0 as an on-demand capability, useful after debugging the failures, to produce a summary diagnosis.

Significance/Benefits to JPL and NASA:

#1 Our resulting software-tool would make JPL’s and NASA’s testing-campaigns much more efficient and thorough than they are today [Fifo

2019] – if we can see a way to satisfy our relatively-weak requirements with these super-humanly-strong testing-campaigns!

#2 The literature has already shown that CT-campaigns are even stronger than the FAA’s strong MC/DC software testing standard [Vilkomir

2017]. In future work, we hope to show that our tool can satisfy MC/DC with reduced cost. If that succeeds, this work would be important to the

aviation industry, and to the public.

Publications: None yet.

Combinatorial Testing Is Super-humanly Efficient And Thorough; Let’s Make It
Responsive And Intelligible Too (User-Friendly)

Principal Investigator: Marcel Schoppers (348); Co-Investigators: Anthony Barrett (393)

Program: FY21 R&TD Innovative Spontaneous Concepts

National Aeronautics and Space Administration

National Aeronautics and Space Administration

Jet Propulsion Laboratory

California Institute of Technology

Pasadena, California

www.nasa.gov

Copyright 2021. All rights reserved.

Clearance Number:

RPC/JPL Task Number: R21230
PI/Task Mgr Contact

Email: Marcel.J.Schoppers@jpl.nasa.gov

(Vertical axis:) % of bugs caught as a function

of (horizontal axis:) "testing strength" =

number of variables interacting = combination

size t. “Code coverage” is roughly

comparable to t=1.

(This figure is online at NIST.)

How we expect the tool to work: An outer

loop for test-campaign re-generation, an inner

loop for day-to-day testing, and C5.0 after

debugging the failures, to produce a summary

diagnosis, as a decision tree or set of rules.

References: Miraldi Fifo, Eduard Enoiu, Wasif Afzal, “On Measuring Combinatorial Coverage of Manually Created Test Cases for Industrial Software,” IEEE International Conference

on Software Testing, Verification and Validation Workshops (22 April 2019, in Xi'an China): pp. 264–267.

D. Richard Kuhn, Dolores Wallace, Albert Gallo Jr, "Software Fault Interactions and Implications for Software Testing," IEEE Transactions on Software Engineering 30#6

(2004): pp. 418–421.

Sergiy Vilkomir, Aparna Alluri, D. Richard Kuhn, Raghu Kacker, “Combinatorial and MC/DC Coverage Levels of Random Testing” IEEE International Conference on

Software Quality, Reliability and Security (25 July 2017 in Prague, Czech Republic): pp. 61–68.

https://csrc.nist.gov/projects/automated-combinatorial-testing-for-software

