
Objective
Create a multivariate fire prediction model using three monthly predictive variables (vapor pressure deficit, VPD; surface soil moisture, 
SM; enhanced vegetation index, EVI, which measures greenness) with the goal of creating a skillful model with flexibility to easily 
incorporate new predictors.

Background
As climate change progresses, wildfires are becoming increasingly frequent and severe (Figure 1). Models capable of providing skillful 
forecasts of fire danger can help guide warning and decision systems. The Fire Danger from Earth Observations (FDEO) model 
(Farahmand et al. 2020) attempted to predict fire danger over the continental US using monthly VPD from AIRS, SM from GRACE, and
EVI from MODIS with a 2-month lead time. It used United States Forest Service (USFS) National Fire Program Analysis Fire-
Occurrence Database (FPA FOD) fire data as predictand. The data were collected from 2003-2013 on a monthly 0.25° grid. In each cell, 
dominant land cover type is determined from US Geologic Survey (USGS) data, and five wildfire regimes (Evergreen, Shrubland, 
Deciduous, Herbaceous, and Wetland) were analyzed separately. For each land cover type, FDEO performs single-variable quadratic 
regressions using the variable with highest coefficient of determination. FDEO was not skill-assessed using withheld test data. The 
FDEO model is not extensible to multiple predictor variables. We seek a systematic and extensible approach.
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Approach and Results
We took the following initial steps:
• Understanding FDEO. We recoded the FDEO model in Python.
• Understanding the data. The three predictor variables show a noisy correlation with the predictand, which only emerges by bin-averaging the predictor 

and predictand based on the predictor (Figure 2). The predictand is highly imbalanced, with 90% of the raw fire burned area pixels having zero values.
• Creating an object-oriented Python framework for managing and preparing the data. We calculated the climatology, monthly anomaly, and monthly 

standard anomaly (anomaly divided by standard deviation) for each pixel on a per-land-cover-type and per-month basis. We then performed an N-month 
running temporal mean, and an M-grid-cell 2D spatial running mean where N and M were nominally set to 3 as per the FDEO model. 

• Implementing and calling multiple models from a switch statement using identically-prepared data: a simple quadratic regression (SR) model which 
mimics the FDEO model, a Random Decision Forest (RDF) regressor, an RDF classifier, a Gradient Boosting Decision Tree (GBDT) regressor, a 
Bayesian regressor (BR), and a Multi-layer Perceptron (MLP) regressor. 

• Assessing the model results. We implemented training/testing splitting using 30% (nominal) withheld data for testing.
We saw no discernible signal when running the models on unbinned data. We therefore:
• Binned the data into bins according to VPD, with 20 bins nominally. We started with a single variable analysis using VPD, and also used a linear 

combination of the binned VPD, EVI, and SM. This yielded a weak signal.
• Injected synthetic signals into the VPD predictor, and ran the models both on the real data and on the signal-injected data.
• Examined various performance metrics. Figures 2-4 show preliminary results using three of the models (SR, RDF, BR) using August and Evergreen 

data, using models trained on mean values within K linearly-spaced bins (nominally 20). 

Significance/Benefits to JPL and NASA

We implemented a flexible, extensible data and modeling framework for wildfire prediction and compared several models. The project is 
now primed for follow-on work:
1. Update data through 2021. Western wildfire has entered a quantitatively new regime over the last decade (Figure 5). 
2. Include additional predictors, such as daily max, min temperature, daily VPD, daily wind. Weather processes also play a role.
3. Use Bayesian hierarchical methods to perform multivariate modeling with data binning.
4. Focus on key regions, such as the High Sierra in California or the San Gabriel Mountains in California.
5. Provide appropriate uncertainty estimates e.g. from Bayesian models.
6. Explore further model and data transformation options e.g. sigmoid regression.
7. Further validate and assess model interpretability.

Our initial study and this additional work builds JPL’s capacity and provides a path toward a multivariate fire prediction model
suitable for operationalization. As fires worsen the need for such models as well as funding availability will increase, likely 
creating opportunities for JPL to contribute in this area for the betterment of society.

Figure 1. The 20 largest (by acreage) fires in 
California history demonstrating the very recent 
emergence of a new climate-change-driven fire 
regime in California. Figure credit: CalFire.

Figure 2: Vapor Pressure Deficit (VPD, ‘X_train’) standard anomaly unbinned (left) and 
binned (right) versus fire burned area standard anomaly (‘y_train’), for August and the 
Evergreen lc_type. Figures for Soil Moisture (SM) and Enhanced Vegetation Index (EVI) are 
similar, i.e. they show correlation with fire burned area when binned but not when unbinned.

Figure 3: Simple quadratic regression model using VPD only (similar 
to FDEO). Observed vs. predicted using training and testing data are 
shown on the left and the right respectively, and data with injected 
synthetic signal and without are shown in red and blue respectively.

Figure 4: Random Decision Forest (RDF) regression model using 
VPD, EVI, and SM. Observed vs. predicted using training and testing 
data are shown on the left and the right respectively, and data with 
injected synthetic signal and without are shown in red and blue 
respectively.

Figure 5: Bayesian regression model using VPD, SM, and EVI. 
Observed vs. predicted using training and testing data are shown on 
the left and the right respectively, and data with injected synthetic 
signal and without are shown in red and blue respectively.


