
Objectives
Our objective was to use machine learning (ML) to train an astronomical
image previewer for data cubes taken by scientific CMOS (SCMOS)
cameras observing the sky so that the previewer can discern between
normal and anomalous behavior and classify the anomalous behavior into
different categories, such as camera anomaly, a telescope tracking
problem, clouds in the field, excessive background light level, an intrusion
of bright transient objects like LEO satellites, etc.
Background
Modern SCMOS cameras offer imaging capability in large format with high
frame rate yet very low read noise. Their usage in planetary sciences and
astrophysics has been increasing, e.g. ISRO’s Chandrayaan-1, NASA’s
Parker Solar Probe, and ESA’s Solar Orbiter missions. The low read noise
enables to use short exposure images to replace a long exposure image
for high temporal sampling and robustness against any transient signals.
For example, the synthetic tracking (ST) technique [1,2], a JPL developed
technology, uses short exposure frames to avoid streaked images for
detecting fast-moving asteroids/satellites. The frames are integrated in
post-processing to track both moving objects and stars to gain sensitivity
and provide accurate astrometry. Convinced by our successful
demonstrations, the Air Force will deploy ST for the next generation
Ground-Based Electro-Optical Deep Space Surveillance system. Because
real data always contain anomalous cases, to ensure timely data
processing, it is necessary to discriminate these cases in advance before
they cause trouble in the data processing pipeline. SCMOS cameras can
generate large volumes of data in short time, therefore it is not feasible to
have human intervention to assess data quality. We propose to use
machine learning to train an image previewer for determining anomalous
frames/datasets.

An Astronomical SCMOS Image Previewer
Principal Investigator: Chengxing Zhai (398); Co-Investigators: Zaki Hasnain (312), Umaa Rebbapragada (398), 

Michael Shao (326), Navtej Saini (398), Russell Trahan (383)
Program: FY21 R&TD Innovative Spontaneous Concepts

National Aeronautics and Space Administration

National Aeronautics and Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California
www.nasa.gov
Copyright 2021. All rights reserved.

Clearance Number: 
RPC/JPL Task Number: R21259PI/Task Mgr Contact

Email: Chengxing.Zhai@jpl.nasa.gov

Significance/Benefits to JPL and NASA
We expect increasing usage of CMOS cameras for future Mar’s explorations as well as 
other NASA missions. For example, Mars 2020 carried four CMOS engineering cameras. 
An image previewer that can identify anomalous images can help on-board/in-situ data 
processing to avoid potential complex consequences from processing abnormal data. We 
can also discard bad images in advance to reduce downlink data volume.
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Figure 1.  Examples of anomalous cases (a) a very bright satellite streak (b) ghost image 
of a bright star (e) clouds in field (d) excessive background variations from clouds (e) 
unexpected telescope slewing (f) out-of-focus images and a bright satellite (g) obstruction 
of tree leaves.

Approach
We used astronomical data from a near-Earth object (NEO) survey using
JPL’s robotic telescopes at the Sierra Remote Observatory to study the
anomalous behaviors in the images. The images were taken by three
different CMOS cameras (1 ZWO ASI6200MM Pro and 2 QHY600M) with
an exposure time of 5 seconds. Each dataset consists of 100 frames of
images observing the same sky field. We focused 30 datasets (100
frames/dataset) with anomalous cases including excessive sky background,
out-of-focus, unexpected telescope slewing, significant clouds as shown in
Figure 1.
We develop a pipeline to analyze astronomical images using computer
vision-based feature extraction and machine learning techniques to identify
outliers (Figure 2). Concurrently, we built an interactive web-based
dashboard (AstroView) to explore, analyze, communicate, and assist in
labeling data (See screenshots in Figures 3-6). We hand-label four anomaly
groups: 1) images with satellite trajectories, 2) images with telescope
slewing, 3) images with cloud obstruction, 4) images with obstructions due
to low elevation telescope pointing. These hand-labels are used to 1)
assess the quality of the extracted features, 2) the ability of the clustering
algorithm to differentia normal and outlier data, and similarly 3) the ability of
the anomaly detection algorithm to detect these outlier images.
We extract five distinct sets (see ‘Feature extraction’ in Figure 2) of features
in each image: 1) basic statistics to detect changes in the sky background,
2) histogram of the image intensities and corresponding entropy to also
describe amount of intense stars and uniformity in the image, 3) focus
features to detect clarity of the image, 4) blob detection features to estimate
the number of visible stars, and 5) streak detection features to detect
satellite trajectories and telescope slew lines. We also create a sixth set of
features from the aforementioned features by normalizing each feature by
the mean value over a whole dataset.

Results
Out of the total 3000 images, 1131 images were hand-labeled to contain any one of the four
anomalies (237 trajectory anomalies, 75 slew anomalies, 614 cloud anomalies, 233
obstruction anomalies). We use Welch’s t-test (Table 1) to evaluate whether the mean value
of anomalous/non-anomalous frames is different for each feature. We found 8, 9, 13, and 14
features’ mean values to be different between frames with/without trajectory, slew, cloud,
and obstruction anomalies. We group all four hand-labeled anomalies two create a no-
anomaly/any-anomaly set, and compare this classification to outliers found by the DBSCAN
clustering algorithm and outliers detected by the Isolation Forest algorithm. DBSCAN
clustering performed better in distinguishing the labeled anomalies (precision=0.74,
recall=0.80, F1=0.77) as compared to Isolation forest (precision=0.55, recall=0.55, F1=0.49).
The blob detection tools developed successfully describe a nominal clear sky, and the streak 
detection tool is able to capture both slew and trajectory streaks. The combination of these 
features describes the imaging environment. These results suggest that our analytical 
pipeline comprising of computation tools and an interactive dashboard have made possible 
a future effort, which can successfully train machine learning classifiers to target specific 
anomalies.

Figure 2. Flow-chart showing schematic of work done to extract features and find 
anomalies in astronomical images.

Figure 4. Examples of extracted features for 30 datasets (note legend is 
truncated as this is a screenshot of an interactive plot).

Figure 5. Comparison of extracted features to four hand-labeled anomalies for all 3000 
frames in the dataset.

Any anomaly Trajectory Slew Cloud Obstruction
Feature t p-value t p-value t p-value t p-value t p-value

Max Laplace -2.5 1.E-02 -1.4 2.E-01 -7.1 4.E-10 -5.4 7.E-08 5.2 5.E-07
Max Sobel 12.9 2.E-36 -14.0 3.E-35 11.9 4.E-19 8.7 2.E-17 10.3 3.E-21
Mean Masked 12.5 1.E-34 -3.8 2.E-04 3.4 1.E-03 9.4 3.E-20 17.0 3.E-50
Median Masked 6.6 6.E-11 0.4 7.E-01 -1.5 1.E-01 6.5 1.E-10 27.3 7.E-133
Num Streaks -5.4 7.E-08 5.0 6.E-07 -6.7 3.E-09 5.4 7.E-08 5.4 7.E-08
Percent High 21.6 1.E-90 2.0 5.E-02 0.3 8.E-01 29.4 3.E-163 38.8 6.E-242
Percent Low 7.5 9.E-14 2.2 3.E-02 8.3 1.E-16 8.4 1.E-16 8.4 1.E-16
Percent Mid 25.5 2.E-121 1.5 1.E-01 0.7 5.E-01 33.3 4.E-200 41.3 3.E-258
Relative Blob 
Centroid Distance -2.2 3.E-02 -6.9 2.E-11 1.1 3.E-01 -1.8 7.E-02 1.2 2.E-01

Relative Masked 
Mean 2.8 5.E-03 -5.0 1.E-06 2.8 6.E-03 -3.0 3.E-03 11.6 2.E-26

Relative Num 
Blobs 5.1 4.E-07 0.4 7.E-01 2.0 5.E-02 -1.5 1.E-01 30.2 8.E-175

Relative Shannon 
Entropy 3.6 3.E-04 -4.4 1.E-05 4.5 2.E-05 -2.9 4.E-03 10.5 3.E-22

Streak Pixels 
Percent -4.6 4.E-06 4.4 1.E-05 -5.4 9.E-07 4.7 3.E-06 4.7 3.E-06

Var Laplace 18.2 9.E-70 -0.2 9.E-01 0.1 9.E-01 23.9 8.E-113 19.9 5.E-75
Var Sobel 24.4 2.E-117 1.2 2.E-01 1.1 3.E-01 24.9 2.E-119 49.4 0.E+00

Table 1. Welch’s t-test results for difference in mean value of extracted features between anomalous and non-anomalous 
images. Four hand-labeled anomaly types: trajectory, slew, cloud, and obstruction due to surface features. 

Hand-label Precision Recall F1 support
No anomaly 0 0.87 0.83 0.85 1869
Any anomaly 1 0.74 0.80 0.77 1131
Macro avg 0.80 0.81 0.81 3000
Weighted avg 0.82 0.82 0.82 3000

Table 2. 11 extracted features of images are clustered using DBSCAN, and the reported outliers vs inliers 
are compared to hand-labeled no-anomaly vs any-anomaly groups for 3000 images. The outliers detected by 
DBSCAN. The clustering performed best in detecting obstruction and cloud anomalies but did not identify 
trajectory and slew anomalies well. Partly because the majority of those images are unaffected

Figure 6. Number of blobs detected (top), anomaly scores from the Isolation 
Forest algorithm (middle) for a dataset which contains trajectory anomalies as 
shown by image #57 (bottom left) and slew anomalies from image #73-91, as 
shown by image #86 (bottom right). The number of blobs detected drops as the 
camera slews at image #73-91. More negative anomaly scores indicate presence 
of more anomalous features. 

Figure 3. Distance to the centroid of blobs (top), maximum value of the Laplace 
filter (middle) for a dataset which contains obstruction anomalies as shown by 
image #31 (bottom left) and a slew anomaly as shown by image #99 (bottom right). 
The obstruction on the left edge of image #31 appears and starts moving across 
the field of view leading to changes in the Laplace filter values. Similarly the 
distribution of detected blobs shifts as the obstructions occupy more space. 


