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Rationale/Background
The global economic valuation of the direct and indirect
use of coral reefs has been estimated near $10 trillion
annually. There is great concern about the current state of
reefs, as well as their future. Yet very little of the world’s
reef area has actually been studied quantitatively (i.e.,
0.01-0.1%) since virtually all reef assessments rely on
human in-water survey techniques that are laborious,
expensive, and limited in spatial scope. The result may
not be representative of the reef under study, and in any
case, it is unknown whether it is representative of global
ecosystems.

This project will develop technologies for automating data
analysis and mission planning of coral reef ecosystems.
This strategy represents a fundamental change in how we
understand coral reefs and assess their health. Instead of
small, infrequent, uncorrelated studies of isolated
locations, we will begin to measure coral reefs globally,
updating often, and seeing worldwide patterns.

Benefit to JPL and NASA
The proposed investigation will advance the state of the
art in site mapping of coral reef ecosystems, improving
the accuracy of marine ecology and increasing the
efficiency of coral reef assay. It aligns with the needs and
directions of NASA and their missions (e.g., CORAL and
SBG). The proposed investigation will impact JPL’s
technical capabilities in aquatic systems, potentially
leveraging in-house investments and capabilities (e.g.,
CARACaS) and cross-lab expertise (robotics, autonomy,
and science). It will extend JPL’s and CMU’s expertise to
problems in oceanography through in-situ exploration and
characterization of ocean biochemistry.
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FIGURE 5 | Active coral reef mapping process.

technique for extrapolation, as well as for the refinement of
mapping as new data is collected.

Gaussian process are typically used for mapping scalar values,
for example ocean temperature, salinity, altimetry, or dissolved
oxygen measurements (Binney et al., 2010; Flaspohler et al.,
2019; Stankiewicz et al., 2021). However, our coral reef mapping
problem involves multivariate data (i.e., high-resolution spectra).
We overcome this challenge by using GP regression to learn the
distribution of low-dimensional features Z instead. Moreover,
dimensionality reduction with either PCA or VAE uncorrelates
the learned feature representation. This trick simplifies the
problem substantially by allowing for the utilization of a small
number of i=1, 2,...,d independent GPs.

We next provide a brief explanation regarding the elements
of our specific GP regression model. If needed, extensive GP
documentation can be found in Rasmussen andWilliams (2006).
Formally, we define an input vector that concatenates spatial
coordinates and remote spectra as �!v = [

�!
l , �!x ] 2 V ⇢ R2+m,

similarly as Thompson (2008). We assume there exists a latent
function f i : V ! R that maps an input �!v to each feature zi:

zi = f i(�!v )+ 2
i.

In other words, the goal of a GP is to learn a distribution over the
values that f i(�!v ) can take in order to predict a spectral feature
zi for many locations over large areas. A GP assumes that for any
set of inputs, the vector of outputs is distributed as a multivariate
Gaussian, which is parametrized as follows:
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A GP combines observed (or training) data
0 = {(�!v ⇤

1, z
i⇤
1 ), ..., (�!v ⇤

q, zi⇤q )} with a finite set of unseen points

U = {(�!v1 , f i(�!v 1)), ..., (
�!v p, f i(

!
v ))}. This allows observed data

to be used to predict unseen data. The prediction also follows a
Gaussian distribution:
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where µ̂i is the predicted or posterior mean, and 6̂i is the
predicted or posterior covariance matrix. These are computed
using the standard formulas for conditional multivariate
Gaussians (Eaton, 1983):
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When using GPs, one most specify a prior mean function µi :

V ! R, as well as a covariance function ki : V ⇥ V ! R. The
covariance function ki is used to construct covariance matrices
ki, for instance:
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Here we assume that the mean function is always zero
(i.e.,µi(

!
v ) = 0, 8�!v 2 V) because of the way features are

normalized by both PCA and VAE. For the covariance function,
we rely on the widely used squared exponential kernel.
Specifically, we use a kernel that distinguishes between spatial and
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al. 2003; Wilkinson 2008]. Ultimately, because these reports are based on disparate and sparse 
data sources, it is not possible to determine their accuracies. 

To improve assessment and prediction of global coral reef condition, it is necessary to collect 
uniform, high-density data covering entire reef systems across all coral reef regions. Remote 
sensing is the only viable means to provide such data [Hedley et al. 2016; Hochberg et al. 2003; 
Mumby et al. 1999]. However, to the present, satellite sensors have been largely inadequate for 
assessment of global coral reef status, since they lack the necessary spectral resolution to 
accurately discriminate between coral and algae [Hochberg and Atkinson 2003]. Numerous case 
studies have demonstrated the ability for multispectral sensors with moderate or high spatial 
resolution (e.g., Landsat or WorldView, respectively) to produce reasonably accurate maps of 
reef “habitats” or “biotopes,” which has led to global efforts such as the Millennium Coral Reef 
Mapping Project and the Allen Coral Atlas. In these efforts, habitat labels are qualitative 
descriptors comprising various combinations of substrate (e.g., sand, limestone, rubble), benthic 
functional type (e.g., coral, algae, seagrass), reef type (e.g., fringing, patch, barrier), and/or 
location within the reef system (e.g., slope, flat). Mapping of these non-standardized “habitats” 
has become common (reviewed in [Hedley et al. 2016]).  These efforts have generated good 
depictions of reef location and ecological zonation within reefs, but because their underlying data 
lack the ability to spectrally discriminate the fundamental reef benthic types, the map products 
fail to answer one of the most fundamentally important questions to reef science: How much 
coral is there? 

Imaging spectrometry has the demonstrated ability to discriminate between reef benthic types, 
and thus quantify benthic cover [Hochberg and Atkinson 2000, 2003; Hochberg et al. 2003]. 
This is the basis for the NASA Earth Venture Suborbital-2 COral Reef Airborne Laboratory 
(CORAL) mission. However, as yet, there are no global imaging spectroscopy data sets; airborne 
missions like CORAL and spaceborne imagers such as DESIS have small acquisition footprints. 
The NASA Surface Biology and Geology (SBG) mission is expected to provide global coverage 
of spectral imagery, but not until later in the decade. For the moment, no single data set is 
suitable for mapping global reef benthic cover. 

We have developed a method that uses deep learning to reconstruct high-resolution 
(hyperspectral) spectra from low-resolution (multispectral) input data [Candela et al. 2020; 
Candela et al. 2018]. Deep-learning algorithms [Goodfellow et al. 2016] enable training from 
relevant known examples for rapid and computationally efficient reconstruction (example Fig. 
2). The reconstructed high-resolution spectra possess the narrow-band features that enable 
accurate retrieval of reef features, particularly the discrimination between key benthic types 
coral, algae, and sand [Hochberg and Atkinson 2003]. 

 
Fig. 2. Example reconstruction of high-resolution spectrum using deep learning [Candela et al. 2018]. Input is low-

resolution spectrum, in this case observed by Landsat OLI (left). Output is probabilistic prediction of high-resolution 

spectrum (right). Confidence bands (gray) closely match the “ground truth” as measured by PRISM. 

We have further demonstrated that probabilistic methods, specifically Gaussian processes 
[Rasmussen 2004] and Bayesian statistics [Candela et al. 2017], can be used to model a large 

Year 1 (FY19)
• Develop active coral reef mapping 

methods (i.e., machine learning methods 
for spectral and endmember mapping)

Year 2 (FY20)
• Develop path planning for coral reef sampling

Year 3 (FY21)
• Compare hypothesis-map 

studies with prior field studies
• Publish results

Example of the underlying entropy (uncertainty) map that guides the planning algorithms. Entropy maps and spectral predictions at the
beginning (top) and end (bottom) of a simulated traverse.

Four sampling strategies for coral reef
mapping: random sampling, Bayesian
experimental design, Monte Carlo tree
search, and ergodic optimal control. Random
sampling is the simplest approach since it
ignores how useful future samples might be.
Bayesian experimental design provides a
probabilistic framework for identifying the
most informative samples and planning
paths accordingly. Monte Carlo tree search
combines random sampling with a tree
search that focuses on the most promising
actions. Ergodic optimal control not only
selects informative samples, but also
generates smooth trajectories that can be
suitable for boats or AUVs.

Experimental setting for the simulation study. A subregion of 6 x 3 km in Heron Island is
shown on the left, whereas a region of 1.5 x 1.5 km in Kaneohe Bay appears on the right.
Top row: abundance maps from the CORAL mission, serving as the ground truth in this
study. Middle row: predicted abundances using the sampling strategy followed during the
CORAL mission. Bottom row: predicted abundances using paths generated by two optimal
sampling strategies, Maximum Information Gain (left) and Spectral Multi-scale Coverage
(right). White asterisks indicate sampling locations. In this example, the optimal sampling
strategies produce more accurate maps both as a function of spectral reconstruction error ,
in terms of Root Mean Squared Error (RMSE), and unmixing accuracy, in terms of the
Kullback-Leibler Divergence (KLD).

It is apparent that the planning algorithms, together with previous probabilistic models, allow for accurate spectral reconstruction and coral reef mapping, outperforming typical scuba diving methods. Results and methods from this 3-year
SURP project can directly improve management of coral reef ecosystems given (1) its potential to fill gaps among sparse in situ observations, especially in remote, unpopulated, or inaccessible areas, and (2) its ability to aid in design and
refinement of a monitoring program – informing key locations for in situ surveys. The NASA EVS-2 CORAL mission and future ecosystem missions would greatly benefit from these planning algorithms.
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