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Objective

This project will develop technologies for automating data
analysis and mission planning of coral reef ecosystems.
This strategy represents a fundamental change in how we
understand coral reefs and assess their health. Instead of
small, infrequent, uncorrelated studies of isolated
locations, we will begin to measure coral reefs globally,
updating often, and seeing worldwide patterns.

Rationale/Background

The global economic valuation of the direct and indirect
use of coral reefs has been estimated near $10 ftrillion
annually. There is great concern about the current state of
reefs, as well as their future. Yet very little of the world’s
reef area has actually been studied quantitatively (i.e.,
0.01-0.1%) since virtually all reef assessments rely on
human in-water survey techniques that are laborious,
expensive, and limited in spatial scope. The result may
not be representative of the reef under study, and in any
case, it is unknown whether it is representative of global
ecosystems.

Benefit to JPL and NASA

The proposed investigation will advance the state of the
art in site mapping of coral reef ecosystems, improving
the accuracy of marine ecology and increasing the
efficiency of coral reef assay. It aligns with the needs and
directions of NASA and their missions (e.g., CORAL and
SBG). The proposed investigation will impact JPL's
technical capabilities in aquatic systems, potentially
leveraging in-house investments and capabilities (e.g.,
CARACaS) and cross-lab expertise (robotics, autonomy,
and science). It will extend JPL's and CMU’s expertise to
problems in oceanography through in-situ exploration and
characterization of ocean biochemistry.
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Approach and Results

Year 1 (FY19) v

* Develop active coral reef mapping

methods (i.e., machine learning methods
for spectral and endmember mapping)
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Example of the underlying entropy (uncertainty) map that quides the planning algorithms. Entropy maps and spectral predictions at the

beginning (top) and end (bottom) of a simulated traverse.
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« Compare hypothesis-map
studies with prior field studies
* Publish results
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Four sampling strategies for coral reef
mapping: random sampling, Bayesian
experimental design, Monte Carlo tree
search, and ergodic optimal control. Random
sampling is the simplest approach since it
ignores how useful future samples might be.
Bayesian experimental design provides a
probabilistic framework for identifying the
most informative samples and planning
paths accordingly. Monte Carlo tree search
combines random sampling with a ftree
Search that focuses on the most promising
actions. Ergodic optimal control not only
selects informative samples, but also
generates smooth trajectories that can be
Suitable for boats or AUVSs.
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Experimental setting for the simulation study. A subregion of 6 x 3 km in Heron Island is
shown on the left, whereas a region of 1.5 x 1.5 km in Kaneohe Bay appears on the right.
Top row: abundance maps from the CORAL mission, serving as the ground truth in this
study. Middle row: predicted abundances using the sampling strategy followed during the
CORAL mission. Bottom row: predicted abundances using paths generated by two optimal
sampling strategies, Maximum Information Gain (left) and Spectral Multi-scale Coverage
(right). White asterisks indicate sampling locations. In this example, the optimal sampling
Strategies produce more accurate maps both as a function of spectral reconstruction error
in terms of Root Mean Squared Error (RMSE), and unmixing accuracy, in terms of the
Kullback-Leibler Divergence (KLD).
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* Develop path planning for coral reef sampling
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CORAL Mission Sampling Strategy

Heron Island Kane'ohe Bay

Samples: 29
Spectralemor (RMSE): 0.05
Unmixing acc. (KLD): 0.42
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Samples: 13
Spectral error (RMSE): 0.07
Unmixing acc. (KLD): 0.52

157 826 ~157.824 ~157.822 ~157.820 ~157.818 ~157.816 ~157.814 -~ 157812
longtude

Optimal Sampling Strategy

Heron Island Kane'ohe Bay

Samples: 20
Spectral error (RMSE): 0.03
Unmixing acc. (KLD): 0.27
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nand Spectral error (RMSE): 0.03
Unmixing acc. (KLD): 0.33
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It is apparent that the planning algorithms, together with previous probabilistic models, allow for accurate spectral reconstruction and coral reef mapping, outperforming typical scuba diving methods. Results and methods from this 3-year
SURP project can directly improve management of coral reef ecosystems given (1) its potential to fill gaps among sparse in situ observations, especially in remote, unpopulated, or inaccessible areas, and (2) its ability to aid in design and
refinement of a monitoring program — informing key locations for in situ surveys. The NASA EVS-2 CORAL mission and future ecosystem missions would greatly benefit from these planning algorithms.
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