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Objectives
Our objective was to develop a Markov chain Monte Carlo
(MCMC) retrieval algorithm for Earth remote sensing that is fast
enough for operations. A natural approach to the geophysical
retrieval problem is to invoke Bayes’ Rule: if X and Y are two
jointly distributed random variables (or vectors) then the posterior
distribution of X, P (X|Y), is proportional to the product of the
likelihood, P(Y |X), and the prior distribution, P(X):

P(X|Y) ∝ P(Y | X )P (X ).

P(X|Y) reflects a new description of the behavior of X, based on
what is learned from observing Y. By providing this posterior
distribution of the geophysical state given the observed spectra,
uncertainty information is incorporated directly into the retrieval
output.
The standard algorithm for obtaining P (X|Y) in remote sensing
(Optimal Estimation, or “OE”) [1] makes many highly restrictive
assumptions. MCMC does not require these assumptions, but is
computationally intensive, and generally too slow for operational
use. In this project, we investigate a set of computational and
theoretical modifications to standard MCMC algorithms to
achieve the speed required for operational use. We used the
upcoming Surface Biology and Geology (SBG) mission as a
motivating example.

Background

If X is a true geophysical state vector and Y is the corresponding
observed spectrum, the two are related by Y = F (X ) + e, where
F is the forward model, and e is an error term (Figure 1). In OE,
X and e are assumed to be Gaussian, and F is linearized, so the
posterior distribution is also Gaussian. Under these conditions,
specification of the posterior distribution only requires specifying
the first two central moments of that distribution. In reality F is not
linear, and the posterior distribution is unlikely to be Gaussian. In
that case, the first two central moments can be highly misleading
because they ignore multi-modality, extremes, and other
important characteristics of the posterior distribution necessary to
draw accurate conclusions and compute accurate uncertainties
in climate and Earth science problems.

MCMC [2] is a widely-used simulation-based method for
obtaining posterior distributions without restrictive assumptions
on their forms. However, even in simple cases MCMC can be
computationally expensive, and too slow for operations. This is
due, in large part, to two factors both of which are typical in
remote sensing: high-dimensionality of both the spectra and the
state vectors, and complex, computationally intensive forward
models.

Figure 2. Likelihood-informed subspace (LIS) is a dimension reduction method applied to the
state vector, x. LIS partitions the space into two. In the first, the radiances (y, which are jointly
distributed with the state, x) the prior and posterior distributions are different because the data
provide new information. In this figure, x is two-dimensional. The prior distribution of x is on the
left and the posterior is shown on the right. Introducing the observations, y, changes the
distribution differently in the two dimensions.

Approach and Results (1)
We used the SBG designated observable mission concept as a motivating application. SBG will
retrieve 425-dimensional reflectance (state) vectors from observed radiances vectors, and we
have set up a test-bed to do this via MCMC for case studies using synthetic truth derived from
proxy data sources. We compared our test-bed to benchmarks of various versions of
accelerated MCMC against OE. See Figure 1.

Approach and Results (2)
We formulated and implemented dimension reduction for both the radiance observations and the state vector using principal
component analysis (PCA) and Likelihood-informed Subspaces (LIS; see Figure 2) [3], and compared their performance. We found
that, 1) for any given level of dimension reduction, radiances reduced via LIS carry more information about the state (and can produce
estimates with an order of magnitude less error; 2) using LIS-dimension-reduced state vectors gave better estimates of the the
posterior mean and the posterior covariance matrix than when dimension was reduced by PCA (see Figure 3); and 3) MCMC
converged more quickly by orders of magnitude when run on LIS-reduced states (see Figure 4).

Significance

This technology will make JPL more competitive in winning new missions by providing retrieval algorithms that exploit observations 
more fully than do current methods. Mission studies and proposals using MCMC retrievals to demonstrate the value of new sensor 
technologies will have the benefit of rigorous but flexible probabilistic descriptions of the behaviors of the quantities of interest (QOI) to a 
much greater degree than is possible using methods that rely on Gaussian assumptions. The specific technical achievements described 
here represent the first concrete steps. The dimension reduction work will have near-term benefits in the application of existing OE 
algorithms, as well.

Figure 1. The SBG inference problem. MCMC is the algorithm that performs the inversion to
obtain the posterior distribution of the state (x) given the observations (y).

Figure 4. MCMC autocorrelation plots for three state vector wavelengths. MCMC creates a Markov Chain, which after a burn-in period,
represents samples from the posterior distribution of interest. The faster the samples become uncorrelated in the chain, the faster the
chain converges to the target distribution. This plot shows that using LIS dimension reduction and running the chain in the reduced
space, dramatically improves convergence.

Figure 3. Errors in the posterior mean and covariance matrix estimates when dimension reduction is performed via PCA versus LIS.
Bayes Risk is a matric for distance between mean vectors. Forstner distance is a distance metric for covariance matrices. This analysis
was performed on a single pixel in the often-used Beckman Lawn test scene [4], and used a simple inversion based on a linear forward
model.


