
Objectives

The objective is to use airborne hyperspectral imagery (HIS)
collected in September 2020 by NASA’s Airborne
Visible/Infrared Imaging Spectrometer Next Generation
(AVIRIS-NG) for the early detection of Grapevine Leafroll
Virus (GLRV) infection in grapevine in California vineyards.
Our overarching goal is to develop a scalable, remote sensing
framework for detecting plant-pathogen interactions in
grapevine, an economically important specialty crop. Our
objectives and paired-underlying hypothesis are as follows:
First, we compare and contrast supervised and unsupervised
machine learning methods for symptomatic disease detection.
We hypothesize that the optimal machine learning approach
will be a combination of supervised methods given their
history of success in other terrestrial imaging spectroscopy
applications. Next, we compare statistical and physiological
dimensionality reduction for improving disease detection
precision. We hypothesize that dimensionality reduction will
improve our detection accuracy and yield a set of
wavelengths with known association with plant defense
chemicals and core functional traits to link to known disease
biology. Lastly, we work towards identifying the minimum
threshold for detection with spaceborne imaging
spectroscopy. We hypothesize that 15% disease incidence,
half the recommended vineyard removal threshold, is
sufficient to detect disease at the 30m spatial of the
upcoming NASA Surface Biology and Geology (SBG) mission.
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Approach and Results

In collaboration with industry and academic
colleagues, 280 acres of Aglianico, Cabernet
Sauvignon, and Petite Sirah grapes were scouted for
disease symptoms at peak time of year and a subset
collected for confirmation testing (Figure 1). AVIRIS
imagery was free of clouds, aerosols, and smoke. A
bidirectional reflectance distribution function was
applied to each acquisition to correct for view and
illumination angle effects. Additionally, water
absorption bands between (0-400nm, 1310-
1470nm,1750-2000nm, 2400-2600nm) were removed
for each acquisition. Some of the ground team data
resulting from the scout effort were provided in a
shapefile that stored point-geometry. The shapefiles
provided a latitude and longitude as well as the
corresponding disease-label for each location a scout
identified GLRV. Data from the ground-teams that
were not processed/stored in a geographic
information system (GIS) were georeferenced using
in-house GIS application and location details
provided in the scout-documentation, the resulting
points were then visually validated for spatial-
accuracy. Once the data was able to be used for a
spatial join query, GIS and remote-sensing python
libraries such as Rasterio, GDAL, and Geo-Pandas
were used to spatially-sample the AVIRIS acquisitions
where the ground-data and the imagery spatially
overlapped (Figure 2). Once data was properly
formatted into a pandas dataframe, the data was
consequently split into training and testing a starting
split of 70/30 respectively. Using Scikit-Learn’s
random forest classification, an initial model was
trained over a set of points and AVIRIS imagery over
one vineyard in the city of Lodi. Here, we observed
clear spectral differences that allowed for
differentiation between healthy and GLRV infected
vines at one-meter resolution with an average 72%
accuracy on the testing dataset (Figure 3). We
hypothesize these spectral differences are linked to
inherent disease physiology and will scale as has
been seen with other physiology-linked processes.
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Significance/Benefits to JPL and NASA

The use of remote sensing to advance plant disease detection represents an innovative 
opportunity to further the use of Earth system science research to benefit society and inform 
decision making while advancing applications-focused research in precision agriculture, one of 
the priorities outlined for Surface Biology and Geology in the 2018 NASA Decadal Survey and 
strategic priorities. The ability to non-destructively sense plant disease would greatly benefit 
modern agriculture and food security. Early intervention is key to successful disease mitigation. 
Farmers can apply systemic fungicides to stop disease before it spirals out of control, but these 
are only effective when applied early during the infection process. Worldwide, plant disease 
research and early intervention efforts are often constrained by a lack of local expertise to 
devote to prevention, a lack of resources to devote to monitoring and/or remediation, and a lack 
of qualified personnel to allocate to both these tasks. The use of remote sensing to advance 
plant disease research represents an opportunity to avoid these challenges and make a 
difference in the lives of farmers worldwide while advancing applications focused research on 
precision agriculture, one of the goals outlined in the NASA Decadal Survey (ESAS, National 
Academies, 2018). 
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Background
Plant-pathogen interactions can impact a variety of plant
traits that can be non-destructively sensed, from tissue
color changes to foliar chemistry and various other traits[1].
Broadband and multispectral methods relying primarily on
visible and near-infrared reflectance indices have been
historically used to sense late stage plant disease[2,3].
Changes in continuous, short wave infrared (SWIR) has
proved valuable for plant-pathogen interaction sensing due
to SWIR sensitivity to a range of foliar properties[4];
including nutrient content[5,6,7,8], water[9], photosynthetic
capacity[10], physiology[11], phenolics, and secondary
metabolites[12,13,14]. Plant pathogens damage, impair,
and/or alter foliar function, thus changing the chemical
composition of foliage, such as through production of
systemic effectors or secondary metabolites, or by
presence of pathogen structures[15]. These changes can
be sensed using both foliar and imaging-
spectroscopy[16,17]. Recently, Zarco-Tejada et al.
established that airborne hyperspectral imagery can be
used for pre-symptomatic plant disease detection[18].
Here, grapevine and GLRV is proposed as a model
pathosystem. Grape is the highest value fruit crop in the
US grown on over one million acres, with 90% of this
acreage located in California and is ideal for plant-
pathogen interaction sensing due to its perennial nature,
high value, and large number of economically important
diseases.
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