

UNCERTAINTY-AWARE AND SEMANTICS-COGNIZANT SAFE EXPLORATION OF UNKNOWN ENVIRONMENTS

Principal Investigator: Aliakbar Aghamohammadi (347); Co-Investigators: Sung Kim (347), Mykel Kochenderfer (Stanford), Amanda Bouman (Caltech)

Program: FY21 SURP Strategic Focus Area: Localization and Mobility

Objectives

 Develop situational awareness algorithms that encode the uncertainty and semantics of the environments

 Develop perception-aware decision making methods for safe exploration of unknown environments

Background

Key capabilities needed for lunar concept missions based on Design Reference Mission (DRM), Decadal Survey, and Lunar Surface Innovation Initiative (LSII):

- Long traverse and wide-area sampling
- For volatile and magnetic field mapping (longduration and high speed)
- Exploration into comm-denied areas (into lunar pits/skylights/tubes)
- Wide-area / multi-site sampling in the Marius
 Hills volcanic crater region

Approach

Uncertainty and Semantics Representation

- Information RoadMap (IRM)
- Generic graph representation with probabilistic attributes
- Encodes *semantics*, including traversability and spaciousness
- Hierarchical decomposition
- Local IRM to capture high-fidelity semantic information
- Global IRM to scale up to very large environments (~kms)

Semantics-Cognizant Planning under Uncertainty

- Local Coverage Planner
- Multi-heuristic dynamic programming solver
- Finds a path on Local IRM that maximizes the info gain based on semantics
- Global Coverage Planner
- Orienteering solver
- Find the best sequence of frontier nodes to visit on Global IRM

Results

- Successfully demonstrated the semanticcognizant exploration of large unknown environment with physical robots
- Underground of LA Subway Station (a)
 (Narrow and cluttered with complex topology)
- Kentucky Underground Storage (b) and Mine (c)
 (Huge, wide open spaces with muddy terrains)

Significance/Benefits

- Semantics-aware safe exploration capability
- Scalable representation of uncertainty and semantics
- o Real-time multi-resolution planning under uncertainty
- o Hardware validation both in large and narrow spaces
- Publications
- Kim, et al., "PLGRIM: Hierarchical value learning for large-scale exploration in unknown environments," ICAPS, pp. 652-662, 2021.

National Aeronautics and Space Administration
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California
www.nasa.gov
Copyright 2021. All rights reserved.