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Objectives
Planning Observations for Intelligent Science Experimentation (POISE) develops autonomous technologies that enable coordinated, targeted, adaptive 

observations across multiple observing systems guided by the estimated improvement to our model-based understanding, predictive skills, and scientific 
understanding of highest priority Earth processes in the Earth Science Decadal Survey. 

Approach
New technologies include 1) variational ensemble generation for many 
hurricane cases and dates, 2) machine learning model to accelerate 

forecast, 3) observational utility metric and machine learning (ML) utility 
model, 4) utility-based observation scheduling:
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Adaptive Observing Concept

• Identification of observations that are most useful to a physical model 
with machine learning.

• Coordination across observing assets to schedule targeted 
measurements.

• Assimilation of obtained observations back into the forecast model.
• Hurricane intensification as a case study.

Results
• Demonstrate a ~25% reduction in sea level pressure forecast ensemble 

variance in OSSE-type simulation experiments over “blind” observations.
• Tropical cyclone intensity projections closer to the true state
• Improved numerical model stability

Utility
• Utility measures reduction in variance (RIV) of a forecast ensemble
• ML model (ensemble trees): 1) predicts forecast at a locations based on any 

number of other locations, 2) extracts only impactful locations and types of 
observations, 3) computes RIV as pseudo coefficient of determination.

Planning
• Select observation requests to maximize utility while obeying operational 

constraints of multiple heterogeneous assets.
• Utilizes combinatorial optimization (i.e. simulated annealing)  to allocate 

requests to individual assets.

Lower variance with 
adaptive strategy

Higher 
variance 

with 
control

Variance of the forecast ensembles

A new automated federated observation planning strategy developed, 
motivated by the adaptive observing system:
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• Combines observations from 
independent heterogenous assets to 
maximize utility

• Decouples utility from low-level 
planning, easier integration with 
existing asset operational systems.

Significance/Benefits to JPL and NASA
• Maximizes science return of observations from multiple assets
• Improve science understanding and predictive capabilities
• Applicability to systems with strong assimilative models
• Strong support for mission proposal competitiveness 
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