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Our objective was to build on JPL’s existing observation-informed land carbon and water cycle modeling efforts (CARDAMOM, CMS-Flux) to build an ESM-compliant land surface
and biosphere model informed and constrained by the satellite POR and surface site measurements; specifically, the model will comply with the Caltech CIiMA Earth System Model
(ESM) capability, directed by collaborator Tapio Schneider. In state-of-the-art conventional land models states and processes are typically tuned to data from a sparse network of
sites, and consequently there is no confidence for representing the terrestrial land surface and predicting its future state. Integration of the ever-expanding set of satellite
observations into land models is therefore critical for both resolving present-day land surface and land biosphere processes, and predicting their sensitivity to climate in the coming
decades. Our technical objectives (TOs) can be summarized as follows: Technical Objetive 1.Development of an “online” JPL-CIiIMA land model capability: adaptation and
integrtation of the existing CARDAMOM land model into the CIiIMA framework to facilitate JPL-CIIMA ESM capability, as informed by the satellite POR. Technical Objetive 2.
Development of an “offline” JPL land model capability, based on the JPL land model adaptations and enhancements achieved in TO1, to facilitate dedicated scientific and mission
formulation OSSE investigation.
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