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Objectives:
• Generate high-flux ultracold atoms for quantum sensing 

applications, such as quantum gravity gradiometer (QGG) 
for Earth mass change missions (Fig. 1)

• Target: 108 Cs atoms at 1nK

• SWaP optimized for space missions
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Background:
• Quantum sensing is part of the National Quantum Initiative, 

and NASA’s quantum initiative.

• Spaceborne QGG is identified as the most promising 

instrument development to yield impactful result.

• QGG performance is limited by number of ultracold atoms. 

Required atom number: 108, state-of-the-art (CAL): 105

• Conventional method doesn’t scale, need new approaches

Approaches and Results:
• Direct laser cooling vs evaporative cooling (Fig. 2):

• Atom efficiency > 25% (in literature)

• Blue-detuned box potential vs (red-detuned) optical dipole 

trap (Fig. 3):

• Larger trap volume, less density-dependent atom loss

• Lower optical power requirement

• Blue box overlapped with cold atoms (Fig. 4)

• Simulation showing direct laser cooling (Fig. 5)

• High-level concept of operations
o Architecture Diagram (cartoon-

like is okay)
o Power modes
o Science scenarios
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Figure 1. QGG for Earth gravity measurements

Figure 2. Left: Direct laser cooling. Right: Conventional BEC generation.

Blue-detuned box potential Optical dipole trap

vs

Low power, large volume High power, small volume

Figure 3. Direct laser cooling of trapped atoms in a blue box 
potential (left) and in an optical dipole trap (right).

Significance/Benefits to JPL and NASA:
• JPL has been leading in space quantum sensor technology and applications.

• This SRTD will position JPL in a competitive and competent position to capture the next 

mission opportunity deploying the first high-performance quantum sensor measurement 

system in space, such as QGG for mass change.
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Figure 4. Cold atoms in a blue box.
Figure 5. Raman cooling simulation. Velocity 

distribution before (blue) and after (red) cooling.


