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Objectives
1. Characterizing stellar noise components in terms of their pixel-by-pixel effects 

on the spectrum, using DL. 

2. Quantifying the contribution of each stellar RV noise component to the RV 

error in each spectrum down to, or below, instrumental noise levels, using DL.

3. Determining the data requirements of neural networks in terms of constraints 

on SNR, resolution, cadence, and number of spectra to effectively train a neural 

network to characterize and/or quantify each component of stellar RV jitter.

Background
● State-of-the art methods use cross-correlation function (CCF) or search for 

activity-sensitive lines [1],[2],[3],[4]. 
● CCF studies [1],[2] cannot account for differences in responses of individual 

to stellar activity. 
● Activity-sensitive line searches focus on line depth changes [3],[4], rather 

than asymmetric line-shape changes which are more highly correlated with 
stellar RV jitter [2]. 

● Our method aims to globally characterize all such changes in the spectrum, 
by use of a large quantity of high quality input data (34450 HARPS-N 
spectra over 3 years) and by harnessing the power of DL methods to probe 
the effects of stellar activity on the spectrum at unprecedented detail.

Approach and Results

Datasets and Preprocessing (Figure-1-B.1): Training data is 3 years of HARPS-N sun-as-a-star spectra (34450 spectra) from 2015 to 2018. The RV corrections are provided by the HARPS-N 
team. Alpha-shape Fitting to Spectrum (AFS) algorithm [2] implementation in the RvSpectML package is used for continuum normalizations. Interpolation uses a sinc kernel, preventing 
the introduction of noise due to intra-pixel sensitivity. 

Ancillary Datasets (Figure-1-B.1): (1) Helioseismic and Magnetic Imager (HMI) onboard the Solar Dynamics Observatory (SDO) provides near single-granule spatial resolution photometric 
maps of the solar surface. These data were reduced using the SolAster Package to quantify solar activity conditions.  (2) Observing conditions for each observation were provided by the 
HARPS-N team. In tests of our neural network, we use data such as seeing, humidity, and air column density to isolate telluric noise component(s) and validate network performance.

Significance/Benefits to JPL and NASA
● NASA is beginning to invest resources in ground-based radial velocity (RV) surveys 

to support its space-based search for habitable exoplanets (NASA ExEP Science 
Gap List). 

● Stellar activity is considered to be the largest source of noise in EPRV instrument 
teams’ RV error budgets. 

● Improvements the characterization and quantification of stellar RV jitter in EPRVs 
will enhance stellar activity mitigation algorithms, boosting the efficiency of 
upcoming missions like JPL’s HabEx, which directly image habitable exoplanets, by 
~50% (R. Morgan, EPRV working group report), improving our chance of detecting 
biosignatures. 

● Establishing the data requirements for neural network approaches to disentangle 
stellar noise sources will help inform future EPRV survey designs on the best way 
to allocate limited telescope time, and help NASA decide the amount of observing 
time to be purchased on telescopes in order to meet their EPRV goals.
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Deep Learning (Figure-1-C): HARPS-N spectra are subsetted to extract lines associated with a spectral line mask 
(G2.Espresso). Individual CNNs are trained using a single spectral line as input and ancillary value as the target. This 
approach results in ~5k x N models created, where we have ~5k spectral lines and N ancillary features. This was 
demonstrated by targeting injected RVs, an optional output of the preprocessing pipeline. This helps understand and 
highlight lines that are sensitive and insensitive to stellar variability; lines sensitive to stellar variability will have a high 
RMSE/MAE while lines insensitive to stellar variability have a low(er) RMSE/MAE. Ancillary variables representative of 
stellar activity are swapped out as the target variable to understand what lines are more or less sensitive to a given type of 
stellar activity (below)

Clustering (Figure-1-F): HARPS-N spectral lines are empirically generated using the public RvLineList package. In 
order to measure the change in each line over time and identify lines with similar changes, a feature extraction 
step followed by clustering is performed. The feature extraction step involves, for each line,  deriving the 
correlations between the pixels associated with adjacent time steps. Then, a few statistics like mean, standard 
deviation, skew, kurtosis are all derived as features for each line to quantify the change in each line over time. In 
order to characterize and group together similar manifestations of stellar noise, DBSCAN clustering algorithm 
was used. The clustering results are validated by correlating the clustered lines with stellar activity signals from 
the ancillary data. The validation results are depicted in figures 2 and 3 and indicate that the features affect the 
quality of clustering. So, using this as a baseline, we wish to explore physically derived features in the coming 
year. 

Figure-1: Technical Approach Flow Diagram

Figure-2: Various stellar activity components (from the ancillary dataset) are 
correlated with the spectral lines in each cluster. The clusters in this figure are 
derived by applying dbscan on four statistical features. The correlations of the 
clustered lines with the stellar activity components seem weak. 

Figure-3: The clusters in this figure are derived by applying dbscan on 
two statistical features. The correlations of the clustered lines with the 
stellar activity components seem relatively stronger in a few clusters.

Figure-4. The three charts correspond to different targets the CNNs were trained on - an injected planetary RV, photospheric velocity, convective velocity (left to right). The red highlighted 
points correspond to the top-75 best performing lines relative to their target values (columns) and show distinct patterns across the three different sets.


