

Hierarchical Antennas for mm-wave Spectroscopy on a Chip

Principal Investigator: Andrew Beyer (389); Co-Investigators: Clifford Frez (389), Sunil Golwala (Caltech), Fabien Defrance (Caltech)

Program: FY22 R&TD Topics Strategic Focus Area: Direct/Coherent Detectors and Arrays

Objectives:

To develop hierarchical, superconducting phased-array antennas for 3D mapping of universe over entire THz spectral band (0.1 THz-2 THz).

0.1-2 THz replete w/ molecular rotational, atomic fine-structure lines in star-forming environments from Milky Way to highest redshifts at which galaxies exist

Background

ot Array antenna

THZ spectrometers: potential to map universe in 3D (good angular resolution on the sky and redshift depth).

-Fixed element receiving antenna limits efficiency w/ tight beam profile to ~half octave

 $(v_{max}:v_{min} 1.65:1) \rightarrow$ reduces 3D potential of detectors. -Solution \rightarrow hierarchical antennas extend v_{max} : v_{min} to ~ 1:6.

State-of-the-art (SOA)

Beam maps at a) 90 GHz and b) 150 GHz, fixed element antenna vs. c) 90 GHz and d) 150 GHz w/ hierarchical-array antennas.

Above: Superconducting phased-array antenna components. Right: Fundamental array element schematic.

Actual design of **2-scale hierarchical antenna**, w/ four fundamental array elements & bandpass filters in μ -strip.

4 of the bandpass filters

fed from μ -strip antenna

elements

Microscope image of **2-scale**

the Microdevices Laboratory (MDL).

Cryostat upgrades to verify performance:

New optical windows installed for beam

Both figs.: A. Cukierman, et.al. APL112, 132601 (2018)

SOA issues: 1) Artifacts from inefficient filling of focal plane. 2) Our approach \rightarrow E-field uniform illumination and translational symmetry for expansion across a focal plane. 3) SOA requires lenslets. JPL: spectroscopic mapping; will not need lenslets. Bottom line \rightarrow Simpler: flat and no lenslet/wafer mating.

Good optical efficiency (B3 is best as anti-reflection (AR) tile designed for 200-300 MHz)

Above: 3-scale antenna for Y2. Each grey square indicates one fundamental element. Colored rectangles indicate bandpass filters. 2-scale antenna consists of one quadrant of the 3-scale antenna.

National Aeronautics and Space Administration

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

www.nasa.gov

Clearance Number: CL# Poster Number: RPC#R22122 Copyright 2022. All rights reserved.

and bandpass measurements

New device fixture for optimal efficiency collection (backshorts, AR, etc.), beam measurement out to 40-45 deg off-axis

Significance/Benefits to JPL and NASA:

Instrument infusion into a SuperSpec-based upgrade of the TIM balloon payload. The long-term targets are to assist PRIMA, a long-term flagship FIR mission.

PI/Task Mgr. Contact Information: Email: Andrew.D.Beyer@jpl.nasa.gov