

Uncertainty-aware and semantics-cognizant safe exploration of unknown environments

Principal Investigator: Sung Kim (347); Co-Investigators: Aliakbar Aghamohammadi (347), Joshua Ott (Stanford), Oriana Peltzer (Stanford), Mykel Kochenderfer (Stanford)

Program: FY22 SURP
Strategic Focus Area: Localization and Mobility

Objectives

- Develop situational awareness algorithms that encode the uncertainty and semantics of the environments
- Develop perception-aware decision making methods for safe exploration of unknown environments

Background

Key capabilities required for lunar concept missions (Design Reference Mission (DRM), Decadal Survey, and Lunar Surface Innovation Initiative (LSII)):

- Long traverse and wide-area sampling
- o For volatile and magnetic field mapping (long-duration, high speed)
- Exploration into comm-denied areas (lunar pits, skylights, tubes)
- o Wide-area/multi-site sampling in the Marius Hills volcanic crater

Results

 Achieved efficient coverage rate and high resiliency to diverse environmental characteristics via semantics detection and online adaptation in decision making

Approach

Uncertainty and Semantics Representation

- Information RoadMap (IRM)
- Generic graph representation with *probabilistic* attributes [1]
- Detect and encodes semantics, including spaciousness and traversability
- Hierarchical Representation
- Local IRM to capture high-fidelity semantic information
- Global IRM to scale up to very large environments (~kms)

Semantics-Cognizant Planning under Uncertainty

Hierarchical Coverage Planners

 Finds a path on Local/Global IRMs that maximizes info gain and minimizes traversal cost

Leveraged a multi-heuristic
 dynamic programming solver [2]
 and an orienteering solver [A]

- Semantics-based Online Adaptation
- o Adjust the coverage field of view based on the spaciousness [B]
- Switch between local/global plans based on the traversability

Significance/Benefits

- Enhanced situation awareness
- Autonomous semantics detection and its scalable representation
- Semantics-aware safe exploration capability
- Real-time multi-resolution planning under uncertainty
- Hardware validation both in large and narrow spaces
- [1] Kim, et al., "PLGRIM: Hierarchical value learning for large-scale exploration in unknown environments," ICAPS, pp. 652-662, 2021.
- [2] Kim et al., "POMHDP: Search-based Belief Space Planning using Multiple Heuristics," International Conference on Automated Planning and Scheduling (ICAPS), 2019.

National Aeronautics and Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

www.nasa.gov

Clearance Number: CL#22-5020
Poster Number: RPC-161
Copyright 2022. All rights reserved.

Publications:

- [A] Peltzer et al., "FIG-OP: Exploring Large-Scale Unknown Environments on a Fixed Time Budget," IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2022. *To appear*.
- [B] Bouman et al., "Adaptive Coverage Path Planning for Efficient Exploration of Unknown Environments," IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2022. *To appear*.

PI/Task Mgr. Contact Information:

Email: sung.kim@jpl.nasa.gov