

# 4D Printing of Shape Memory Alloys for Solid-State Staged Deployment of Structures

Principal Investigator: Richard Otis (357); Co-Investigators: Ryan Watkins (357), Christine Gebara (355), Nicholas Ury (357), Raymundo Arróyave (Texas A&M University), Ibrahim Karaman (Texas A&M University), Raymond Neuberger (Texas A&M University)

Program: FY22 SURP
Strategic Focus Area: Additive Manufacturing, Multifunctional Systems

### **Objectives:**



Figure 1: Process map of the end-goal project workflow.

- 1. Develop a physics-based model capable of predicting precipitation behavior in additively manufactured NiTi shape-memory alloys.
- 2. Use machine-learning on data generated by the model to predict the thermal history necessary to induce a desired precipitation response.
- 3. Design additive manufacturing processes capable of producing this target thermal history, allowing for NiTi parts with tailored transformation temperatures.

# **Background:**

The shape-memory behavior of NiTi is extremely sensitive to matrix Ni concentration. Heat treatment of NiTi can result in the formation of Ni-rich Ni<sub>4</sub>Ti<sub>3</sub> precipitates.

AM processes can be designed to selectively induce precipitation and locally control transformation temperature



Figure 2: Micrograph of Ni<sub>4</sub>Ti<sub>3</sub> precipitates in Ni<sub>50.8</sub>Ti<sub>49.2</sub>





Figure 3: Example of location-dependent transformation temperatures.

# **Approach and Results:**

- Kawin, an open-source implementation of the KWN algorithm for precipitation modelling, has been developed.
- Kawin can now natively compute the effects of elastic considerations to model the impact of the significant thermal stresses encountered during AM.
- A high-throughput framework for precipitation simulation has been developed and used to significantly optimize performance and model stability.
- High-throughput simulations have been used to perform a sensitivity analysis of model inputs, quantify and propagate uncertainty in model predictions, and calibrate a model for Ni4Ti3 precipitation that can reproduce experimental results.

# a) $\begin{array}{c} R^* \\ \hline r_1 \\ \hline r_2 \\ \hline r_3 \\ \hline r_4 \\ \hline r_5 \end{array}$ b) $\begin{array}{c} R^* \\ \hline R^* \\ R^* \\ \hline R^* \\ R^* \\$





Figure 5: The significant impact of considering elastic contributions on precipitation behavior in Ni<sub>4</sub>Ti<sub>3</sub>

# Significance/Benefits to JPL and NASA:

NiTi based SMA actuators can lift up to 100x their weight, simultaneously actuate in all 3 dimensions, and have little mechanical complexity or failure potential.

Finely controllable SMA based actuators will allow for a significant reduction in the mass and volume required for deployable structures such as solar panels and communications arrays.

## **National Aeronautics and Space Administration**

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

www.nasa.gov



Figure 6: Composite results of high-throughput simulations characterizing the potential output space of prec. number density, phase fraction, and average radius.

# PI/Task Mgr. Contact Information:

Email: Richard.Otis@jpl.nasa.gov

Clearance Number: CL#
Poster Number: RPC-002
Copyright 2022. All rights reserved.