

Development of Ultra-High Temperature Metal Matrix Composites Coatings

Principal Investigator: Douglas Hofmann (357); Co-Investigators: Samad Firdosy (357), Nicholas Ury (357), Poulomi Mukherjee (Cornell University), Ashlee Tianna Gabourel (Cornell University), Atieh Moridi (Cornell University)

Program: FY22 SURP
Strategic Focus Area: Chemical/Non-Chemical propulsion

Objectives: To use laser deposition (LD) to develop ultra-high-temperature coatings comprising metal-matrix-composites (MMCs) made from refractory metals and high-temperature carbides. The work will focus on combining Mo, W, Nb, with WC to produce dense, crack-free coatings so that high-temperature testing can be performed.

Connection to NASA & JPL Strategic Technologies

NASA Technology Taxonomy

01 Propulsion Systems

- 1.1 Chemical Space Propulsion
- 1.4 Advanced Propulsion
- 09 Entry, Decent and Landing
 - 9.1 Atmospheric Entry
- 12 Manufacturing, Materials & Structures
 - 12.1 Materials
 - 12.4 Manufacturing
- **14 Thermal Management Systems**
 - 14.3 Thermal Protection Components

JPL Core Technology/Need

In-Situ Planetary Exploration

- Hot temperature operations
- Propulsion

Sample Return

- Ascent vehicles
- Systems for extreme environments
- Thermal protection systems
- Entry Systems

3D Printed Nozzle in Hybrid Propulsion System

High Temperature
Oxidation and Ablation

Background: JPL and Cornell both possess custom LD coating technology capable of melting and depositing high-temperature metals on substrates with complex geometries. Metal alloy development is needed to prevent cracking in these coatings before high-temperature testing can be performed to measure oxidation and ablation.

Multi-material LD 3D printer at Cornell University

Schematic of refractory composites

Multi-material cladding systems at NASA JPL

Approach and Results: In Year 1, we explored process parameters to create dense, crack-free coatings from pure W, W-Nb, WC-Nb, W+Mo, W+WC, Mo+WC, and pure Mo, using both JPL and Cornell's LD systems. Despite challenges, we successfully produced a variety of coatings with variable microstructure, hardness and toughness.

We explored different laser powers and different additives to reduce cracking and make dense coatings

Significance/Benefits to JPL and NASA: This work supports JPL core technology needs related to high-temperature materials for hybrid propulsion systems, thermal protection systems, and entry systems. This is applicable to JPL mission needs like the Mars Ascent Vehicle & sample return.

National Aeronautics and Space Administration

Jet Propulsion Laboratory California Institute of Technology Pasadena, California

www.nasa.gov

Clearance Number: CL#310966
Poster Number: RPC#SP22007
Copyright 2022. All rights reserved.

Publications/Conference Talks:

"Additive Manufacturing of Refractory Metallic Materials," TMS Annual Meeting 2023, Atieh Moridi, Douglas Hofmann, Samad Firdosy, Ashlee Tianna Gabourel and Poulomi Mukherjee (2023)

PI/Task Mgr. Contact Information:

Email: Douglas.C.Hofmann@jpl.nasa.gov