Communication-Adaptive Navigation for Autonomous Multi-Robot Systems

Principal Investigator: Jean-Pierre de la Croix (347)
Co-Investigators: Federico Rossi (347),
Grace Gao (Stanford University), Derek Knowles (Stanford University)

Program: FY22 SURP
Strategic Focus Area: Multi-robot Teams and In-Space Assembly

Objective

- Create a multi-robot collaborative navigation algorithm that allows agents to navigate towards goal positions while maintaining low position uncertainty.
 - Dynamically handle position uncertainty of the multi-robot network by using a combination of inter-robot ranging measurements from ultrawideband (UWB) ranging radios and vision navigation.
 - Investigate how the robots can adapt planned paths to receive interranging measurements with more optimal geometry.

Background

- Position uncertainty can increase while using vision-based navigation when there are rapid changes in lighting, sudden movements, or few visual features in the field of view.
- To take advantage of a multi-robot system, path planning and navigation algorithms must be carefully designed to increase exploration coverage while minimizing positioning and map uncertainty as best as possible.

Approach and Results

- Algorithm creates a control strategy based on partially observable Markov decision processes (POMDPs) which allows the robots to reason about how their control actions will affect the position uncertainty of all robots.
 - The robots plan actions that lower position uncertainty by creating improved geometry for positioning using inter-robot ranging measurements from ultra-wideband (UWB) ranging radios.
 - Each robot deploys an extended Kalman filter (EKF), whose output is used as the observation as well as the belief in the POMDP.
 - To solve the POMDP, adapted the online information particle filter tree algorithm to be compatible with the EKF closed-form output being used as both the observation and belief.
- Shown in simulation to reduce position uncertainty by over 50% over a state-of-the-art sequential decision-making algorithm.

Significance/Benefits to JPL and NASA

- Significant improvement to uncertainty reduction as a result of considering sensing geometry when planning multi-rover paths
- Applicable to future multi-agent missions, such as CADRE or the proposed
 Mars Sample Return Helicopters, whenever position accuracy is critical.

National Aeronautics and Space Administration

Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California

www.nasa.gov

Clearance Number: CL#
Poster Number: RPC#SP22011
Copyright 2022. All rights reserved.

Publications:

Alexandros Tzikas*, Derek Knowles*, Grace Gao, and Mykel Kochenderfer, **Multi-robot Navigation using Partially Observable Markov Decision Processes with Belief-based Rewards**, *JAIS: Journal of Aerospace Information Systems*. Submitted.

PI/Task Mgr. Contact Information:

Email: Jean-Pierre.de.la.Croix@jpl.nasa.gov